Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1974 Apr;118(1):70-82.
doi: 10.1128/jb.118.1.70-82.1974.

Properties and developmental roles of the lysyl- and tryptophanyl-transfer ribonucleic acid synthetases of Bacillus subtilis: common genetic origin of the corresponding spore and vegetative enzymes

Comparative Study

Properties and developmental roles of the lysyl- and tryptophanyl-transfer ribonucleic acid synthetases of Bacillus subtilis: common genetic origin of the corresponding spore and vegetative enzymes

W Steinberg. J Bacteriol. 1974 Apr.

Abstract

The lysyl-transfer ribonucleic acid synthetase (LRS) and tryptophanyl-transfer ribonucleic acid synthetases (TRS) (l-lysine:tRNA ligase [AMP], EC 6.1.1.6; and l-tryptophan:tRNA ligase [AMP], EC 6.1.1.2) have been purified 60- and 100-fold, respectively, from vegetative cells and spores of Bacillus subtilis. There are no significant differences between the corresponding spore and vegetative enzymes with respect to their elution characteristics from columns of phosphocellulose or hydroxylapatite, their molecular weight (~130,000 for LRS and ~87,000 for TRS as determined by gel filtration), their kinetic constants for substrates (in the amino acid-dependent adenosine triphosphate-pyrophosphate exchange reaction), and the kinetics of inactivation by heat and by antibody. The Mg(2+) requirement for optimal enzyme activity of the corresponding spore and vegetative enzyme differ slightly. Mutants having defective (temperature sensitive) vegetative LRS or TRS activities produce spores in which these enzymes are also defective. The mutant spores are more heat sensitive than the parental type, but contain normal levels of dipicolinic acid. They germinate normally at the restrictive temperature (43 C), but are blocked at specific developmental stages in outgrowth. No modification in temperature sensitivity phenotype occurs during outgrowth, nor is there a change in molecular weight of the two enzymes. The implication is that the LRS and TRS activities of the vegetative and spore stages are each coded (at least in part) by the same structural gene. The temperature sensitivity of mutant spores is discussed with respect to those factors which are involved in the formation of the heat-resistant state.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1970 Jul;66(3):844-9 - PubMed
    1. J Bacteriol. 1969 Jun;98(3):1208-18 - PubMed
    1. J Bacteriol. 1973 Apr;114(1):178-82 - PubMed
    1. J Bacteriol. 1960 Jun;79(6):783-8 - PubMed
    1. J Biol Chem. 1969 Nov 25;244(22):6228-32 - PubMed

Publication types

MeSH terms

LinkOut - more resources