Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1979 Mar;42(2):476-96.
doi: 10.1152/jn.1979.42.2.476.

Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis

Comparative Study

Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis

R D Traub et al. J Neurophysiol. 1979 Mar.

Abstract

1. Starting with published data derived mainly from hippocampal slice preparations, we have used computer-modeling techniques to study hippocampal pyramidal cells (HPCs). 2. The dendrites of the HPC apparently have a short electrotonic length. Calcium spikes are apparently generated by a voltage-dependent mechanism whose kinetics are slow in comparison with those generating sodium spikes of the soma. Inward calcium currents are assumed to trigger a long-lasting potassium conductance. This slow calcium-potassium system, which in our model is located predominantly on the dendrites, provides a heuristic model to describe the mechanism for a) the after-depolarization following an HPC soma (sodium) spike, b) the long afterhyperpolarization following repetitive firing, c) bursts of spikes that sometimes occur after orthodromic or antidromic stimulation, and d) the buildup of the "depolarizing shift" during the strong synaptic input presumed to occur during seizures. 3. Fast prepotentials or d-spikes are shown to arise most probably from dendritic "hot spots" of sodium-regenerative membrane. The limited amplitude and short duration of these prepotentials imply that the hot spots are located on small dendrites. 4. Dendritic electroresponsiveness, first postulated for the HPC by Spencer and Kandel (52), is analyzed quantitatively here and is shown to provide rich integrative possibilities for this cell. Our model suggests that, for these nerve cells, alterations in specific membrane properties, particularly calcium electroresponsiveness, can lead to bursting behavior that resembles epileptogenic neuronal responses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources