Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1969 Mar;10(2):158-65.

Lysophosphatidylcholine concentrations and metabolism in aortic intima plus inner media: effect of nutritionally induced atherosclerosis

  • PMID: 4238547
Free article

Lysophosphatidylcholine concentrations and metabolism in aortic intima plus inner media: effect of nutritionally induced atherosclerosis

O W Portman et al. J Lipid Res. 1969 Mar.
Free article

Abstract

The concentration of lysophosphatidylcholine (monoacyl sn-glycerol 3-phosphorylcholine) in intima plus inner media of atherosclerotic aorta from squirrel monkeys was nearly eight times that in comparable control tissue. Plasma levels of the same compound were somewhat elevated in the atherosclerotic group. The metabolism of fatty acyl CoA's and lysophosphatides was studied in cell-free preparations of intima plus inner media from squirrel monkey aorta. Linoleic acid was incorporated predominantly into phosphatidylcholine (as opposed to other phospholipids) when linoleoyl-1-(14)C CoA was the substrate. The extent of this reaction was dependent on the concentration of lysophosphatidylcholine. Lysophosphatidylethanolamine (monoacyl sn-glycerol 3-phosphorylethanolamine) stimulated the incorporation of linoleate into phosphatidylethanolamine. 1-Palmitoyl-1'-(14)C sn-glycerol 3-phosphorylcholine ((14)C-lysophosphatidylcholine) was incorporated into phosphatidylcholine only in the presence of acyl CoA's or ATP plus CoA. Incorporation of (14)C with (14)C-lysophosphatidylcholine plus linoleoyl CoA equaled that with linoleoyl-1-(14)C CoA and lysophosphatidylcholine. Various other lines of evidence are presented to support the importance of the fatty acyl CoA:lysophosphatide fatty acyl transferase mechanism in aortic phospholipid metabolism. Cell-free preparations of aortic intima plus inner media from squirrel monkeys with early, nutritionally-induced atherosclerosis utilized linoleoyl-1-(14)C CoA more than preparations from control monkeys when incubations were carried out without added lysophosphatidylcholine and for long periods (30 min). With optimum levels of labeled linoleoyl CoA and unlabeled lysophosphatidylcholine, or unlabeled linoleoyl CoA and labeled lysophosphatidylcholine, there were no differences in substrate utilization between control and atherosclerotic tissues. We conclude that the concentrations of lysophosphatidylcholine, which are higher in atherosclerotic than in control aortic tissues, could be a factor controlling rates of fatty acid incorporation into phosphatidylcholine.

PubMed Disclaimer

LinkOut - more resources