Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Dec 25;18(26):5972-8.
doi: 10.1021/bi00593a033.

Kinetics of Ca2+ carrier in rat liver mitochondria

Kinetics of Ca2+ carrier in rat liver mitochondria

M Bragadin et al. Biochemistry. .

Abstract

The rate of aerobic Ca2+ transport is limited by the rate of the H+ pump rather than by the Ca2+ carrier. The kinetics of the Ca2+ carrier has therefore been studied by using the K+ diffusion potential as the driving force. The apparent Vmax of the Ca2+ carrier is, at 20 degrees C, about 900 nmol (mg of protein)-1 min-1, more than twice the rate of the H+ pump. The apparent Vmax is depressed by Mg2+ and Li+. This supports the view that the electrolytes act as noncompetitive inhibitors of the Ca2+ carrier. The degree of sigmoidicity of the kinetics of Ca2+ transport increases with the lowering of the temperature and proportionally with the concentration of impermeant electrolytes such as Mg2+ and Li+ but not choline. The effects of temperature and of electrolyte do not support the view that the sigmoidicity is due to modifications of the surface potential. Rather, they suggest that Ca2+ transport occurs through a multisubunit carrier, where cooperative phenomena are the result of ligand-induced conformational changes due to the interaction of several allosteric effectors with the carrier subunits. In contrast with La3+ which acts as a competitive inhibitor, Ruthenium Red affects the kinetics by inducing phenomena both of positive and of negative cooperativity. The Ruthenium Red induced kinetics has been reproduced through curve-fitting procedures by applying the Koshland sequential interaction hypothesis to a four-subunit Ca2+ carrier model.

PubMed Disclaimer

LinkOut - more resources