Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1979 Mar;236(3):F246-51.
doi: 10.1152/ajprenal.1979.236.3.F246.

Renal and nephron hemodynamics in spontaneously hypertensive rats

Comparative Study

Renal and nephron hemodynamics in spontaneously hypertensive rats

W J Arendshorst et al. Am J Physiol. 1979 Mar.

Abstract

Renal and nephron hemodynamics were compared between anesthetized, nondiuretic, spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). Although the mean arterial pressure was higher in SHR than in WKY, 158 VS. 114 mmHg, glomerular filtration rate (GFR) and renal blood flow (RBF) were similar in both groups. So were intrarenal hydrostatic pressures, single nephron GFR (SNGFR), and single nephron blood flow (SNBF). Accordingly, the increased renal vascular resistance (RVR) in SHR was due to predominant preglomerular vasoconstriction. In a second group of SHR, SHR-AC, the femoral arterial pressure was reduced acutely to 114 mmHg by means of aortic constriction above the renal arteries. The mean values for GFR, RBF, SNGFR, SNBF, and intrarenal hydrostatic pressures resembled those in SHR, whereas RVR was less in SHR-AC. These autoregulatory adjustments of RVR were again largely limited to the preglomerular vasculature. Efferent arteriolar resistance was similar in all three groups. We conclude that the enhanced RVR in 12-wk-old SHR is primarily a consequence of a physiological, autoregulatory response of afferent arteriolar resistance to the elevated arterial pressure. Further, RVR in SHR is not fixed and constant but responds appropriately to reductions in renal perfusion pressure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources