Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Aug;141(2):331-49.
doi: 10.1042/bj1410331.

The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction

The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction

C R Bagshaw et al. Biochem J. 1974 Aug.

Abstract

Evidence is presented that the myosin subfragment-1-ADP complex, generated by the addition of Mg(2+) and ADP to subfragment 1, is an intermediate within the myosin Mg(2+)-dependent adenosine triphosphatase (ATPase) turnover cycle. The existence of this species as a steady-state intermediate at pH8 and 5 degrees C is demonstrated by fluorescence measurements, but its concentration becomes too low to measure at 21 degrees C. This arises because there is a marked temperature-dependence on the rate of the process controlling ADP dissociation from subfragment 1 (rate=1.4s(-1) at 21 degrees C, 0.07s(-1) at 5 degrees C). In the ATPase pathway this reaction is in series with a relatively temperature-insensitive process, namely an isomerization of the subfragment-1-product complex (rate=0.055s(-1) at 21 degrees C, 0.036s(-1) at 5 degrees C). By means of studies on the P(i) inhibition of nucleotide-association rates, a myosin subfragment-1-P(i) complex was characterized with a dissociation equilibrium constant of 1.5mm. P(i) appears to bind more weakly to the myosin subfragment-1-ADP complex. The studies indicate that P(i) dissociates from subfragment 1 at a rate greater than 40s(-1), and substantiates the existence of a myosin-product isomerization before product release in the elementary processes of the Mg(2+)-dependent ATPase. In this ATPase mechanism Mg(2+) associates as a complex with ATP and is released as a complex with ADP. In 0.1m-KCl at pH8 1.0mol of H(+) is released/mol of subfragment 1 concomitant with the myosin-product isomerization or P(i) dissociation, and 0.23 mol of H(+) is released/mol of subfragment when ATP binds to the protein, but 0.23 mol of H(+) is taken up again from the medium when ADP dissociates. Within experimental sensitivity no H(+) is released into the medium in the step involving ATP cleavage.

PubMed Disclaimer

References

    1. Biochemistry. 1966 Sep;5(9):2877-84 - PubMed
    1. J Biol Chem. 1967 Oct 10;242(19):4501-6 - PubMed
    1. J Biol Chem. 1968 May 10;243(9):2273-8 - PubMed
    1. Biochemistry. 1969 Mar;8(3):802-10 - PubMed
    1. J Biol Chem. 1969 Jun 25;244(12):3290-302 - PubMed