Nitrite reductase of Escherichia coli specific for reduced nicotinamide adenine dinucleotide
- PMID: 4288493
- PMCID: PMC276301
- DOI: 10.1128/jb.92.3.628-634.1966
Nitrite reductase of Escherichia coli specific for reduced nicotinamide adenine dinucleotide
Abstract
Kemp, John D. (University of California, Los Angeles), and Daniel E. Atkinson. Nitrite reductase of Escherichia coli specific for reduced nicotinamide adenine dinucleotide. J. Bacteriol. 92:628-634. 1966.-A nitrite reductase specific for reduced nicotinamide adenine dinucleotide (NADH(2)) appears to be responsible for in vivo nitrite reduction by Escherichia coli strain Bn. In extracts, the reduction product is ammonium, and the ratio of NADH(2) oxidized to nitrite reduced or to ammonium produced is 3. The Michaelis constant for nitrite is 10 mum. The enzyme is induced by nitrite, and the ability of intact cells to reduce nitrite parallels the level of NADH(2)-specific nitrite reductase activity demonstrable in cell-free preparations. Crude extracts of strain Bn will also reduce hydroxylamine, but not nitrate or sulfite, at the expense of NADH(2). Kinetic observations indicate that hydroxylamine and nitrite may both be reduced at the same active site. The high apparent Michaelis constant for hydroxylamine (1.5 mm), however, seems to exclude hydroxylamine as an intermediate in nitrite reduction. In vitro activity is enhanced by preincubation with nitrite, and decreased by preincubation with NADH(2).
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
