Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Apr;236(4):F392-7.
doi: 10.1152/ajprenal.1979.236.4.F392.

Dissociation of proximal tubular glucose and Na+ reabsorption by amphotericin B

Dissociation of proximal tubular glucose and Na+ reabsorption by amphotericin B

P S Aronson et al. Am J Physiol. 1979 Apr.

Abstract

The effect of amphotericin B on glucose and Na+ transport was studied in the Necturus proximal tubule and in microvillus membrane vesicles isolated from the rabbit renal cortex. In the Necturus experiments, the rate constants for disappearance of radiolabeled glucose (kG) and mannitol (kM) from the tubular lumen were determined by stop-flow microperfusion. Saturability and Na+-dependence of glucose reabsorption was confirmed, since kG was reduced by raising intratubular glucose from 1 to 5 mM or by replacing intratubular Na+ with choline. Neither maneuver affected kM. Intratubular amphotericin B (10 microgram/ml), previously shown to stimulate active Na+ reabsorption in the Necturus proximal tubule, inhibited kG with no effect on kM. In the membrane vesicle preparation, amphotericin inhibited the uphill glucose uptake which results from imposing a NaCl gradient from outside to inside, but had no effect on glucose uptake in either the absence of Na+ or in the presence of Na+ when there was no Na+ gradient. Amphotericin B stimulated the uptake of Na+ by the vesicles. The observed dissociation of glucose and Na+ transport by amphotericin B is consistent with the concept that proximal tubular glucose reabsorption is energized by the luminal membrane Na+ gradient and is not directly linked to active Na+ transport per se.

PubMed Disclaimer

Publication types

LinkOut - more resources