Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1973 Feb;70(2):298-302.
doi: 10.1073/pnas.70.2.298.

Alteration of the relative stability of dA-dT and dG-dC base pairs in DNA

Free PMC article

Alteration of the relative stability of dA-dT and dG-dC base pairs in DNA

W B Melchior Jr et al. Proc Natl Acad Sci U S A. 1973 Feb.
Free PMC article

Abstract

Several small alkylammonium ions can eliminate, or even reverse, the usual dependence of the DNA transition temperature on base composition. For example, in 3 M tetramethylammonium chloride, or 2.4 M tetraethylammonium chloride, DNAs of different base compositions all melt at a common temperature, and with a greatly decreased breadth of transition reflecting only the sequence-independent components of melting cooperativity. At still higher concentrations of such additives, dG.dC-rich DNAs melt at lower temperatures than dA.dT-rich molecules. Circular dichroism spectra show that these additives alter the structure of the DNA double helix very little at room temperature. This differential (base-specific) effect on helix stability is investigated with several small additives related to the tetraalkylammonium ions. Additives larger than tetraethylammonium ion have little differential effect on helix stability. Preferential binding of ions to dA.dT base pairs, requiring fit into a "groove" of DNA, is consistent with these data and with equilibrium binding studies. These differential effects can be distinguished from general destabilizing effects, which are independent of specific features of macromolecular conformation or chemistry. Possible experimental uses of this ability to alter the base-composition-dependent components of the stability of the DNA helix are discussed, as well as the insight this phenomenon provides into the molecular basis for the differential stability of dA.dT and dG.dC base pairs.

PubMed Disclaimer

References

    1. J Biol Chem. 1965 Oct;240(10):3909-23 - PubMed
    1. J Chem Phys. 1966 Jun 15;44(12):4567-81 - PubMed
    1. J Biol Chem. 1966 Sep 10;241(17):4030-42 - PubMed
    1. J Pharm Pharmacol. 1968 Feb;20(2):135-45 - PubMed
    1. Biopolymers. 1968;6(8):1218-23 - PubMed

MeSH terms

LinkOut - more resources