Electrostatic effects in hemoglobin: hydrogen ion equilibria in human deoxy- and oxyhemoglobin A
- PMID: 435457
- DOI: 10.1021/bi00577a011
Electrostatic effects in hemoglobin: hydrogen ion equilibria in human deoxy- and oxyhemoglobin A
Abstract
The modified Tanford-Kirkwood theory of Shire et al. [Shire, S. J., Hanania, G.I.H., & Gurd, F.R.N. (1974) Biochemistry 13, 2967] for electrostatic interactions was applied to the hydrogen ion equilibria of human deoxyhemoglobin and oxyhemoglobin. Atomic coordinates for oxyhemoglobin were generated by the application of the appropriate rigid rotation function to alpha and beta chains of the deoxyhemoglobin structure [Fermi, G. (1975) J. Mol. Biol. 97, 237]. The model employs two sets of parameters derived from the crystalline protein structures, the atomic coordinates of charged amino acid residues and static solvent accessibility factors to reflect their individual degrees of exposure to solvent. Theoretical titration curves based on a consistent set of pKint values compared closely with experimental potentiometric curves. Theoretical pK values at half-titration for individual protein sites corresponded to available observed values for both quaternary states. The results bring out the cumulative effects of numerous electrostatic interactions in the tetrameric structures and the major effects of the quaternary transition that result from changes in static solvent accessibility of certain ionizable groups.
Similar articles
-
Electrostatic effects in hemoglobin: Bohr effect and ionic strength dependence of individual groups.Biochemistry. 1979 May 15;18(10):1928-36. doi: 10.1021/bi00577a012. Biochemistry. 1979. PMID: 35218
-
Calculation of the energy difference between the quaternary structures of deoxy- and oxyhemoglobin.Biochim Biophys Acta. 1975 Oct 20;405(2):388-403. doi: 10.1016/0005-2795(75)90104-x. Biochim Biophys Acta. 1975. PMID: 1237318
-
Detection of the heme perturbations caused by the quaternary R----T transition in oxyhemoglobin trout IV by resonance Raman scattering.Biophys J. 1989 Apr;55(4):703-12. doi: 10.1016/S0006-3495(89)82869-3. Biophys J. 1989. PMID: 2720068 Free PMC article.
-
pH-dependent processes in proteins.CRC Crit Rev Biochem. 1985;18(2):91-197. doi: 10.3109/10409238509085133. CRC Crit Rev Biochem. 1985. PMID: 3899508 Review.
-
Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems.Biophys Rev. 2017 Oct;9(5):699-728. doi: 10.1007/s12551-017-0311-5. Epub 2017 Sep 18. Biophys Rev. 2017. PMID: 28921104 Free PMC article. Review.
Cited by
-
Proton transfer dynamics in the nonhomogeneous electric field of a protein.Biophys J. 1991 Jan;59(1):4-11. doi: 10.1016/S0006-3495(91)82192-0. Biophys J. 1991. PMID: 1849756 Free PMC article.
-
Improving the Thermostability and Activity of Transaminase From Aspergillus terreus by Charge-Charge Interaction.Front Chem. 2021 Apr 14;9:664156. doi: 10.3389/fchem.2021.664156. eCollection 2021. Front Chem. 2021. PMID: 33937200 Free PMC article.
-
Electrostatic free energy of lysozyme.Biophys J. 1983 Dec;44(3):293-8. doi: 10.1016/S0006-3495(83)84302-1. Biophys J. 1983. PMID: 6362730 Free PMC article.
-
A model for the non-specific binding of catabolite gene activator protein to DNA.Nucleic Acids Res. 1984 Nov 26;12(22):8475-87. doi: 10.1093/nar/12.22.8475. Nucleic Acids Res. 1984. PMID: 6390343 Free PMC article.
-
Evolution of the amino acid substitution in the mammalian myoglobin gene.J Mol Evol. 1980 Jul;15(3):197-218. doi: 10.1007/BF01732948. J Mol Evol. 1980. PMID: 7401178