Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1973 Nov;52(11):2822-35.
doi: 10.1172/JCI107478.

The metabolism of cholestanol, cholesterol, and bile acids in cerebrotendinous xanthomatosis

The metabolism of cholestanol, cholesterol, and bile acids in cerebrotendinous xanthomatosis

G Salen et al. J Clin Invest. 1973 Nov.

Abstract

The metabolism of cholesterol and its 5-dihydro derivative, cholestanol, was investigated by means of sterol balance and isotope kinetic techniques in 3 subjects with cerebrotendinous xanthomatosis (CTX) and 11 other individuals. All subjects were hospitalized on a metabolic ward and were fed diets practically free of cholesterol and cholestanol. After the intravenous administration of [1,2-(3)H]cholestanol, the radioactive sterol was transported and esterified in plasma lipoproteins in an identical manner to cholesterol. In these short-term experiments, the specific activity-time curves of plasma cholestanol conformed to two-pool models in both the CTX and control groups. However, cholestanol plasma concentrations, total body miscible pools, and daily synthesis rates were two to five times greater in the CTX than control individuals. The short-term specific activity decay curves of plasma [4-(14)C]cholesterol also conformed to two-pool models in both groups. However, in the CTX subjects the decay was more rapid, and daily cholesterol synthesis was nearly double that of the control subjects. Plasma concentrations and the sizes of the rapidly turning over pool of exchangeable cholesterol were apparently small in the CTX subjects, and these measurements did not correlate with the large cholesterol deposits found in tendon and tuberous xanthomas. Despite active cholesterol synthesis, bile acid formation was subnormal in the CTX subjects. However, bile acid sequestration was accompanied by a rise in plasma cholestanol levels and greatly augmented fecal cholestanol outputs. In contrast, the administration of clofibrate lowered plasma cholesterol levels 50% and presumably reduced synthesis in the CTX subjects. Plasma cholesterol concentrations and fecal steroid excretion did not change significantly during this therapy. These findings indicate that the excessive tissue deposits of cholesterol and cholestanol that characterize CTX were associated with hyperactive neutral sterol synthesis. The demonstration of subnormal bile acid formation suggests that defective bile acid synthesis may predispose to the neutral sterol abnormalities.

PubMed Disclaimer

References

    1. J Lipid Res. 1965 Jul;6:397-410 - PubMed
    1. Arch Neurol. 1968 Jul;19(1):47-53 - PubMed
    1. J Clin Invest. 1968 Jan;47(1):127-38 - PubMed
    1. J Clin Invest. 1968 Feb;47(2):231-41 - PubMed
    1. J Lipid Res. 1973 Mar;14(2):178-88 - PubMed

MeSH terms