Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium
- PMID: 4373478
- PMCID: PMC2109358
- DOI: 10.1083/jcb.63.3.904
Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium
Abstract
Evidence from a morphological study of the oral apparatus of Paramecium caudatum using electron microscope techniques have shown the existence of an elaborate structural system which is apparently designed to recycle digestive-vacuole membrane. Disk-shaped vesicles are filtered out of the cytoplasm by a group of microtubular ribbons. The vesicles, after being transported to the cytostome-cytopharynx region in association with these ribbons, accumulate next to the cytopharynx before they become fused with the cytopharyngeal membrane. This fusion allows the nascent food vacuole to grow and increase its membrane surface area. The morphology of this cytostome-cytopharynx region is described in detail and illustrated with a three-dimensional drawing of a portion of this region and a clay sculpture of the oral apparatus of Paramecium. Evidence from the literature for the transformation of food vacuole membrane into disk-shaped vesicles both from condensing food vacuoles in the endoplasm and from egested food vacuoles at the cytoproct is presented. This transformation would complete a system of digestive vacuole membrane recycling.
Similar articles
-
Phagosome fusion vesicles of paramecium. I. Thin-section morphology.Eur J Cell Biol. 1983 Jan;29(2):150-8. Eur J Cell Biol. 1983. PMID: 6682040
-
Membrane recycling and endocytosis in Paramecium confirmed by horseradish peroxidase pulse-chase studies.J Cell Sci. 1980 Oct;45:131-45. doi: 10.1242/jcs.45.1.131. J Cell Sci. 1980. PMID: 7462342
-
Calmodulin localization and its effects on endocytic and phagocytic membrane trafficking in Paramecium multimicronucleatum.J Eukaryot Microbiol. 2008 Nov-Dec;55(6):481-91. doi: 10.1111/j.1550-7408.2008.00347.x. J Eukaryot Microbiol. 2008. PMID: 19120793
-
[Comparative analysis of the structure of the vacuolar system of the bladder granular cells in the frog and of the contractile vacuole complex of protozoans].Tsitologiia. 1983 Aug;25(8):889-95. Tsitologiia. 1983. PMID: 6356532 Review. Russian.
-
Molecular aspects of membrane trafficking in paramecium.Int Rev Cytol. 2003;232:185-216. doi: 10.1016/s0074-7696(03)32005-4. Int Rev Cytol. 2003. PMID: 14711119 Review.
Cited by
-
Accumulation and Dissolution of Magnetite Crystals in a Magnetically Responsive Ciliate.Appl Environ Microbiol. 2018 Apr 2;84(8):e02865-17. doi: 10.1128/AEM.02865-17. Print 2018 Apr 15. Appl Environ Microbiol. 2018. PMID: 29439993 Free PMC article.
-
Molecular identification of a SNAP-25-like SNARE protein in Paramecium.Eukaryot Cell. 2008 Aug;7(8):1387-402. doi: 10.1128/EC.00012-08. Epub 2008 Jun 13. Eukaryot Cell. 2008. PMID: 18552286 Free PMC article.
-
Lectin binding sites in Paramecium tetraurelia cells. II. Labeling analysis predominantly of non-secretory components.Histochemistry. 1986;85(5):377-88. doi: 10.1007/BF00982667. Histochemistry. 1986. PMID: 3781885
-
Nonlysosomal vesicles (acidosomes) are involved in phagosome acidification in Paramecium.J Cell Biol. 1983 Aug;97(2):566-70. doi: 10.1083/jcb.97.2.566. J Cell Biol. 1983. PMID: 6885911 Free PMC article.
-
Material-engineered bioartificial microorganisms enabling efficient scavenging of waterborne viruses.Nat Commun. 2023 Aug 3;14(1):4658. doi: 10.1038/s41467-023-40397-5. Nat Commun. 2023. PMID: 37537158 Free PMC article.