Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Mar;46(3):467-75.
doi: 10.1152/jappl.1979.46.3.467.

Role of respiratory heat exchange in production of exercise-induced asthma

Role of respiratory heat exchange in production of exercise-induced asthma

E C Deal Jr et al. J Appl Physiol Respir Environ Exerc Physiol. 1979 Mar.

Abstract

We have hypothesized that it is the total heat flux in the tracheobronchial tree during exercise that determines the degree of postexertional obstruction in asthma, and have developed quanititative expressions that relate these two events. We tested this hypothesis by comparing the observed responses to exercise, while our subjects inhaled dry air at various temperatures ranging from subzero to 80 degrees C in a random fashion, to those that we predicted would occur based upon calculations of respiratory heat exchange. We further determined if heat could be transferred from the inspired air to the mucosa so as to offset evaporative losses from the airways. The observed responses fell as air temperature was increased from -11 to +37 degrees C and exactly matched theoretical predictions. Above 37 degrees C, the observed response exceeded predictions, indicating that it was not possible to provide sufficient heat per se in the air to offset the vaporization of water. However, when small amounts of water vapor were added to the inspirate at high temperatures, bronchospasm was virtually abolished and the response again closely matched theoretical expectations. We conclude that the magnitude of exercise-induced asthma is directly proportional to the thermal load placed on the airways and that this reaction is quantifiable in terms of respiratory heat exchange.

PubMed Disclaimer

Publication types