The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins
- PMID: 4389026
- PMCID: PMC2107759
- DOI: 10.1083/jcb.41.2.521
The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins
Abstract
Rat liver peroxisomes isolated by density gradient centrifugation were disrupted at pH 9, and subdivided into a soluble fraction containing 90% of their total proteins and virtually all of their catalase, D-amino acid oxidase, L-alpha-hydroxy acid oxidase and isocitrate dehydrogenase activities, and a core fraction containing urate oxidase and 10% of the total proteins. The soluble proteins were chromatographed on Sephadex G-200, diethylaminoethyl (DEAE)-cellulose, hydroxylapatite, and sulfoethyl (SE)-Sephadex. None of these methods provided complete separation of the protein components, but these could be distributed into peaks in which the specific activities of different enzymes were substantially increased. Catalase, D-amino acid oxidase, and L-alpha-hydroxy acid oxidase contribute a maximum of 16, 2, and 4%, respectively, of the protein of the peroxisome. The contribution of isocitrate dehydrogenase could be as much as 25%, but is probably much less. After dissolution of the cores at pH 11 , no separation between their urate oxidase activity and their protein was achieved by Sephadex G-200 chromatography.
