Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase
- PMID: 4394455
- PMCID: PMC335805
- DOI: 10.1073/pnas.66.4.1190
Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase
Abstract
The transport of beta-galactosides by isolated membrane preparations from Escherichia coli strains containing a functional y gene is markedly stimulated by the conversion of D-lactate to pyruvate. The addition of D-lactate to these membrane preparations produces a 19-fold increase in the initial rate of uptake and a 10-fold stimulation of the steady-state level of intramembranal lactose or thiomethylgalactoside. Succinate, DL-alpha-hydroxybutyrate, and L-lactate partially replace D-lactate, but are much less effective; ATP and P-enolpyruvate, in addition to a number of other metabolites and cofactors, do not stimulate lactose transport by the vesicles. Lactose uptake by the membrane preparations in the presence of D-lactate requires oxygen, and is blocked by electron transport inhibitors and proton conductors; however, uptake is not significantly inhibited by high concentrations of arsenate or oligomycin. Furthermore, the P-enolpyruvate-P-transferase system is not involved in beta-galactoside transport by the E. coli membrane vesicles. The findings indicate that the beta-galactoside uptake system is coupled to the membrane-bound D-lactic dehydrogenase via an electron transport chain but does not involve oxidative phosphorylation.
Similar articles
-
Relationship of a membrane-bound D-(-)-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations.Proc Natl Acad Sci U S A. 1970 Jul;66(3):1008-15. doi: 10.1073/pnas.66.3.1008. Proc Natl Acad Sci U S A. 1970. PMID: 4316677 Free PMC article.
-
The pattern of utilization of respiratory metabolic intermediates by preimplantation rabbit embryos in vitro.Exp Cell Res. 1967 Sep;47(3):619-24. doi: 10.1016/0014-4827(67)90020-1. Exp Cell Res. 1967. PMID: 6054032 No abstract available.
-
Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.J Biol Chem. 1971 Sep 10;246(17):5518-22. J Biol Chem. 1971. PMID: 4330922 No abstract available.
-
Transport studies in bacterial membrane vesicles.Science. 1974 Dec 6;186(4167):882-92. doi: 10.1126/science.186.4167.882. Science. 1974. PMID: 4620043 Review.
-
Regulation of fatty acid synthesis in adipose tissue.Adv Enzyme Regul. 1966;4:3-18. doi: 10.1016/0065-2571(66)90004-5. Adv Enzyme Regul. 1966. PMID: 4383522 Review. No abstract available.
Cited by
-
Conservation and transformation of energy by bacterial membranes.Bacteriol Rev. 1972 Jun;36(2):172-230. doi: 10.1128/br.36.2.172-230.1972. Bacteriol Rev. 1972. PMID: 4261111 Free PMC article. Review. No abstract available.
-
Fatty acid transport by the lipophilic bacterium Nocardia asteroides.J Bacteriol. 1976 May;126(2):751-7. doi: 10.1128/jb.126.2.751-757.1976. J Bacteriol. 1976. PMID: 770452 Free PMC article.
-
Induction of Staphylococcus aureus Lactose Permease in the Absence of Glycerolipid Synthesis.Proc Natl Acad Sci U S A. 1971 Feb;68(2):420-4. doi: 10.1073/pnas.68.2.420. Proc Natl Acad Sci U S A. 1971. PMID: 16591907 Free PMC article.
-
The respiratory chains of Escherichia coli.Microbiol Rev. 1984 Sep;48(3):222-71. doi: 10.1128/mr.48.3.222-271.1984. Microbiol Rev. 1984. PMID: 6387427 Free PMC article. Review. No abstract available.
-
Role of the cytoplasmic membrane in the synthesis of ribonucleic acid by disrupted spheroplasts of Pseudomonas schuylkilliensis.J Bacteriol. 1972 Jan;109(1):218-28. doi: 10.1128/jb.109.1.218-228.1972. J Bacteriol. 1972. PMID: 5061920 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases