Structural differentiation of stacked and unstacked chloroplast membranes. Freeze-etch electron microscopy of wild-type and mutant strains of Chlamydomonas
- PMID: 4396088
- PMCID: PMC2108116
- DOI: 10.1083/jcb.48.3.594
Structural differentiation of stacked and unstacked chloroplast membranes. Freeze-etch electron microscopy of wild-type and mutant strains of Chlamydomonas
Abstract
Wild-type chloroplast membranes from Chlamydomonas reinhardi exhibit four faces in freeze-etchreplicas: the complementary Bs and Cs faces are found where the membranes are stacked together; the complementary Bu and Cu faces are found in unstacked membranes. The Bs face carries a dense population of regularly spaced particles containing the large, 160 +/- 10 A particles that appear to be unique to chloroplast membranes. Under certain growth conditions, membrane stacking does not occur in the ac-5 strain. When isolated, these membranes remain unstacked, exhibit only Bu and Cu faces, and retain the ability to carry out normal photosynthesis. Membrane stacking is also absent in the ac-31 strain, and, when isolated in a low-salt medium, these membranes remain unstacked and exhibit only Bu and Cu faces. When isolated in a high-salt medium, however, they stack normally, and Bs and Cs faces are produced by this in vitro stacking process. We conclude that certain particle distributions in the chloroplast membrane are created as a consequence of the stacking process, and that the ability of membranes to stack can be modified both by gene mutation and by the ionic environment in which the membranes are found.
Similar articles
-
Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique.Proc Natl Acad Sci U S A. 1974 May;71(5):2052-6. doi: 10.1073/pnas.71.5.2052. Proc Natl Acad Sci U S A. 1974. PMID: 4525315 Free PMC article.
-
Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro.J Cell Biol. 1976 Oct;71(1):136-58. doi: 10.1083/jcb.71.1.136. J Cell Biol. 1976. PMID: 988028 Free PMC article.
-
Chloroplast structure and function in ac-20, a mutant strain of Chlamydomonas reinhardi. 3. Chloroplast ribosomes and membrane organization.J Cell Biol. 1970 Mar;44(3):547-62. doi: 10.1083/jcb.44.3.547. J Cell Biol. 1970. PMID: 5415236 Free PMC article.
-
A chloroplast membrane lacking photosystem II. Thylakoid stacking in the absence of the photosystem II particle.Biochim Biophys Acta. 1979 Jun 5;546(3):481-97. doi: 10.1016/0005-2728(79)90083-5. Biochim Biophys Acta. 1979. PMID: 454579
-
The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardi.Annu Rev Genet. 1970;4:397-408. doi: 10.1146/annurev.ge.04.120170.002145. Annu Rev Genet. 1970. PMID: 4268904 Review. No abstract available.
Cited by
-
Freeze-fracturing of nerve growth cones and young fibers. A study of developing plasma membrane.J Cell Biol. 1974 Oct;63(1):180-96. doi: 10.1083/jcb.63.1.180. J Cell Biol. 1974. PMID: 4609396 Free PMC article.
-
Incorporation of polypeptides into thylakoid membranes of Chlamydomonas reinhardtii. Cyclic variations.J Cell Biol. 1976 May;69(2):327-44. doi: 10.1083/jcb.69.2.327. J Cell Biol. 1976. PMID: 1262393 Free PMC article.
-
Light-harvesting pigment-protein complex deficiency in Hosta (Liliaceae).Planta. 1978 Jan;143(3):275-8. doi: 10.1007/BF00391998. Planta. 1978. PMID: 24408465
-
[Maturation of the cherry tomato fruit: evidence, by freeze-etched studies, of the evolution of chloroplasts in two classes of chromoplasts (author's transl)].Protoplasma. 1974;82(1):33-59. doi: 10.1007/BF01276870. Protoplasma. 1974. PMID: 4410079 French. No abstract available.
-
Single chloroplast in folio imaging sheds light on photosystem energy redistribution during state transitions.Plant Physiol. 2023 Feb 12;191(2):1186-1198. doi: 10.1093/plphys/kiac561. Plant Physiol. 2023. PMID: 36478277 Free PMC article.