Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1973 Mar;56(3):762-76.
doi: 10.1083/jcb.56.3.762.

Permeability of microsomal membranes isolated from rat liver

Permeability of microsomal membranes isolated from rat liver

R Nilsson et al. J Cell Biol. 1973 Mar.

Abstract

Water compartments, permeability, and the possible active translocation of various substances in rat liver microsomes were studied by using radioactive compounds and ultracentrifugation. The total water of the microsomal pellet, 3.4 microl/mg dry weight, is the sum of water in the extramicrosomal and intramicrosomal spaces, or 56 and 44%, respectively. Sucrose space accounts for 77% of the intramicrosomal water and the hydration water approximately 14%, leaving almost no sucrose-impermeable space when using the ultracentrifugation approach. With increasing sucrose concentration, microsomes do not show an osmotic response. The intramicrosomal water decreases greatly in the presence of Cs(+) and Mg(++) in rough but not in smooth microsomes. Uncharged substances of molecular weight of up to at least 600 freely penetrate microsomal membranes, which already become impermeable to charged substances at a molecular weight of 90. These substances also induce an osmotic response. The vesicles can be made permeable to charged substances after water treatment and cooling, which, however, does not increase glucose-6-phosphatase and inosine diphosphatase (IDPase) activities, and these enzymes can still be activated by deoxycholate. IDPase, reduced nicotinamide adenine dinucleotide-cytochrome c reductase, and reduced nicotinamide adenine dinucleotide phosphate-dependent hydroxylation reactions, performed in vitro, also disproved the hypothesis of an accumulation of charged substances inside of vesicles of being a major pathway. The products of the enzymic reactions as well as the glucuronidated form of a hydroxylated product can be recovered on the cytoplasmic side of membranes, and little accumulation occurs in the intravesicular compartment.

PubMed Disclaimer

References

    1. J Cell Biol. 1966 Jul;30(1):73-96 - PubMed
    1. Biochim Biophys Acta. 1967 Feb 1;135(1):44-52 - PubMed
    1. J Cell Biol. 1969 Nov;43(2):237-49 - PubMed
    1. Am J Pathol. 1964 Sep;45:353-79 - PubMed
    1. J Biophys Biochem Cytol. 1960 Apr;7:393-6 - PubMed

MeSH terms

LinkOut - more resources