Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Nov;54(5):1056-63.
doi: 10.1172/JCI107849.

Sulfate metabolism in human chondrocyte cultures

Sulfate metabolism in human chondrocyte cultures

E R Schwartz et al. J Clin Invest. 1974 Nov.

Abstract

The depletion of articular cartilage in the afflicted joints is a primary clinical feature of osteoarthritis. This disorder has been linked to a disturbance in the metabolism of the extracellular matrix components of this tissue. The mechanisms involved in the regulation of sulfated proteoglycan metabolism in articular cartilage were therefore studied by measuring the biosynthesis and distribution of (35)S-labeled glycosaminoglycans in chondrocyte cultures derived from normal and osteoarthritic tissue. Incorporation experiments were carried out at pH 7.0 with [(35)S]Na(2)SO(4) in the presence of fetal calf serum, human serum from normal or arthritic individuals, or a combination of these. In the presence of heat-inactivated human sera, osteoarthritic chondrocytes incorporate about two times as much of the available sulfate into macromolecules as do normal chondrocytes. The deposition of newly synthesized sulfated macromolecules into the cell layer by these cells is lower, however, than that by normal cells. In cultures of normal human chondrocytes, noninactivated sera from individuals with osteoarthritis stimulate proteoglycan biosynthesis more than equal concentrations of normal sera. The fraction of the newly synthesized material deposited into the cell layer was found to decrease with increasing serum concentrations. In the absence of serum, a 5- to 10-fold increase in deposited sulfated macromolecules was found. The distribution within the cell layer between intra- and extracellular sites also was monitored by serum factors. Heat inactivation of the human serum component of the medium resulted in a 50% decrease in intracellular retention. These data suggest that biosynthesis of sulfated proteoglycans and their retention in the matrix are modulated by cell and serum factors. Despite and increased uptake of radioactively labeled inorganic sulfate by osteoarthritic chondrocytes in cell culture, a lower rate of deposition into the cell layer resulted in less matrix formation. This may be representative of the process leading to cartilage degradation in degenerative joint disease in vivo.

PubMed Disclaimer

References

    1. J Biol Chem. 1968 Apr 10;243(7):1536-42 - PubMed
    1. Proc Natl Acad Sci U S A. 1968 Jun;60(2):699-706 - PubMed
    1. Anal Biochem. 1968 Dec;26(3):439-44 - PubMed
    1. J Biol Chem. 1969 Feb 10;244(3):876-81 - PubMed
    1. J Exp Med. 1969 Aug 1;130(2):417-42 - PubMed