Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Dec;107(4):365-76.
doi: 10.1111/j.1748-1716.1979.tb06487.x.

On the nature of basal vascular tone in cat skeletal muscle and its dependence on transmural pressure stimuli

On the nature of basal vascular tone in cat skeletal muscle and its dependence on transmural pressure stimuli

P O Grände et al. Acta Physiol Scand. 1979 Dec.

Abstract

The aim of the present study was to elucidate in some detail the characteristics of the intrinsic basal vascular tone in the adrenergically blocked skeletal muscle with regard to its extent and site along the vascular bed, its dependence on arterial pressure via static and dynamic transmural pressure stimuli, and its sensitivity to local metabolic influence. Basal tone, which apparently is of myogenic nature, was pronounced in 'proximal arterial vessels' (greater than 25 mmicrometer i.d.) and in the 'microvessels' (less than 25 micrometers), but low in 'large veins'. Its functional characteristics, however, were different in the 'proximal arterial vessels' and the 'microvessels'. Normal basal tone in the 'microvessels' thus seemed to be intimately dependent on the arterial blood pressure level and, at least partly, initiated by its static mean pressure distension effect as well as by its dynamic pulse pressure oscillations. It could be virtually abolished by a transmural pressure decrease applied at fast rate ('strong inhibitory dynamic transmural pressure stimulus'). Basal tone in the 'proximal arterial vessels', on the other hand, was little affected by arterial pressure and almost irresponsive to transmural pressure stimuli. Basal tone in the 'microvessels' was much more sensitive to metabolic stimuli than that in the 'proximal arterial vessels'. The present results, viewed in the light of some recent electrophysiological studies on vascular smooth muscle, suggest that smooth muscle in the 'microvessels' is mainly of the spike-generating type, whereas that in the 'proximal arterial vessels' seems to be of different nature, possibly of the non-spike-generating type.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources