Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 May 10;251(9):2688-95.

An essential residue at the active site of aspartate transcarbamylase

  • PMID: 4457
Free article

An essential residue at the active site of aspartate transcarbamylase

E R Kantrowitz et al. J Biol Chem. .
Free article

Abstract

Reaction of phenylglyoxal with aspartate transcarbamylase and its isolated catalytic subunit results in complete loss of enzymatic activity. This modification reaction is markedly influenced by pH and is partially reversible upon dialysis. Carbamyl phosphate or carbamyl phosphate with succinate partially protect the catalytic subunit and the native enzyme from inactivation by phenylglyoxal. In the native enzyme complete protection from inactivation is afforded by N-(phosphonacetyl)-L-aspartate. The decrease in enzymatic activity correlates with the modification of 6 arginine residues on each aspartate transcarbamylase molecule, i.e. 1 arginine per catalytic site. The data suggest that the essential arginine is involved in the binding of carbamyl phosphate to the enzyme. Reaction of the single thiol on the catalytic chain with 2-chloromercuri-4-nitrophenol does not prevent subsequent reaction with phenylglyoxal. If N-(phosphonacetyl)-L-aspartate is used to protect the active site we find that phenylglyoxal also causes the loss of activation of ATP and inhibition by CTP. The rate of loss of heterotropic effects is exactly the same for both nucleotides indicating that the two opposite regulatory effects originate at the same location on the enzyme, or are transmitted by the same mechanism between the subunits, or both.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources