Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jun 2;553(3):450-9.
doi: 10.1016/0005-2736(79)90300-6.

Mechanism of blockage of amphotericin B channels in a lipid bilayer

Mechanism of blockage of amphotericin B channels in a lipid bilayer

M P Borisova et al. Biochim Biophys Acta. .

Abstract

A number of organic compounds (non-electrolytes, tetraalkylammonia, etc.) with a molecular size of 6--8 angstrom decrease the conductance of ionic channels formed in the lipid bilayer by a polyene antibiotic amphotericin B. It is suggested that these compounds, upon entering the channel, block the passage of inorganic ions. The extent of conductance blockage by organic ions depends on the membrane potential and electrolyte concentration. In the presence of ionic blockers, for instance tetraethylammonium, amphotericin B-containing membranes assume some properties characteristic of excitable membranes, i.e. the current-voltage characteristic acquires the negative resistance region, and in response to a potential step activation followed by inactivation of conductance is observed. It is shown that the potential dependence of the blockage is due to interaction inside the channel of the blocker ion with penetrating ions, by a mechanism similar to that described by Armstrong ((1979) Q. Rev. Biophys. 7, 179--210) for blockage of squid axon potassium channels by ammonium derivatives.

PubMed Disclaimer

LinkOut - more resources