Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979;61(3):343-54.
doi: 10.1016/s0300-9084(79)80127-3.

Proton N.M.R. study of the conformational dynamics of porcine pancreatic colipase. Titration of aromatic residues

Proton N.M.R. study of the conformational dynamics of porcine pancreatic colipase. Titration of aromatic residues

P Canioni et al. Biochimie. 1979.

Abstract

The low-field portion of the 360 MHz proton N.M.R. spectrum of native porcine pancreatic colipase has been studied as a function of pH over the pH range 2-12. Resonances associated with the 26 protons of the aromatic rings of the two histidines, two phenylalanines and three tyrosines have been identified and tentatively assigned to specific residues. Titrations of pH yielded apparent pKa's of 7.9, 6.9, 10.4, 10.3 and 11.3 for His I (His 30), His II (His 86), Tyr I (Tyr 56 or 57), Tyr II (Tyr 56 or 57) and Tyr III (Tyr 53) respectively (tentative assignments). The high pKa value of His 30 is attributed to the vicinity of Asp 31. The mobility of the aromatic ring of Tyr 53 is hindered and an upper bound of 500 s-1 on the rate of rotation can be estimated. The aromatic rings of the 2 other tyrosine residues and of the 2 phenylalanine residues can rotate freely on the N.M.R. time scale. The study of perturbations in titration profiles and chemical shift values reveals a specific interaction of His 86 with Tyr I and, to a lesser extent, Tyr II. The existence of this interaction indicates that the protein folding brings in close spatial vicinity two distant regions of the covalent structure to form a "hydrophobic-aromatic" site which might be involved in the binding of bile salt micelles to pancreatic colipase.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources