Pathways for bicarbonate transfer across the serosal membrane of turtle urinary bladder: studies with a disulfonic stilbene
- PMID: 458846
- DOI: 10.1007/BF01869045
Pathways for bicarbonate transfer across the serosal membrane of turtle urinary bladder: studies with a disulfonic stilbene
Abstract
Bicarbonate is transferred across the serosal (S) membrane of the epithelial cells of the turtle bladder in two directions. Cellular HCO3- generated behind the H+ pump moves this membrane into the serosal solution. This efflux of HCO3- is inhibited by SITS (4-isothiocyano-4'-acetamido-2,2'-disulfonic stilbene). When HCO3- is added to the serosal solution it is transported across the epithelium in exchange for absorbed Cl-. This secretory HCO3- flow traverses the serosal cell membrane in the opposite direction. In this study the effects of serosal addition of 5 x 10(-4) M SITS on HCO3- secretion and Cl- absorption were examined. The rate of H+ secretion was brought to zero by an opposing pH gradient, and 20 mM HCO3- was added to S. HCO3- secretion, measured by pH stat titration, was equivalent to the increase in M leads to S Cl- flux after HCO3- addition. Neither the S leads to M flux of HCO3- nor the M leads to S flux of Cl- were affected by SITS. In the absence of electrochemical gradients, net Cl- absorption was observed only in the presence of HCO3- in the media; under such conditions, unidirectional and net fluxes of Cl- were not altered by serosal or mucosal SITS. H+ secretion, however, measured simultaneously as the short-circuit current in ouabain-treated bladders decreased markedly after serosal SITS. The inhibition of the efflux of HCO3- in series with the H+ pump and the failure of SITS to affect HCO3- secretion and Cl- absorption suggest that the epithelium contains at least two types of transport systems for bicarbonate in the serosal membrane.