Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5'-triphosphate,3'-diphosphate
- PMID: 4594040
- PMCID: PMC427210
- DOI: 10.1073/pnas.70.11.3250
Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5'-triphosphate,3'-diphosphate
Abstract
The possible role of guanosine 5'-triphosphate,3'-diphosphate (pppGpp) in protein synthesis by Escherichia coli ribosomes and protein factors was examined. Although pppGpp could effectively substitute for GTP in reactions catalyzed by initiation factor 2 (ribosomal binding of fMet-tRNA and formation of N-formylmethionylpuromycin) and elongation factor T (ribosomal binding of Phe-tRNA and formation of dipeptidyl-tRNA), pppGpp poorly supported polyphenylalanine synthesis. The interaction of elongation factor G with pppGpp was, therefore, examined in detail. The nucleotide was found to be almost without activity in the translocation reaction, as measured by formation of N-acetylphenylalanyl-phenylalanylpuromycin. Nevertheless, the rate of the catalytic hydrolysis of pppGpp to guanosine 5'-diphosphate,3'-diphosphate by elongation factor G and ribosomes was about 30% of the rate of hydrolysis of GTP, a rate of hydrolysis that significantly exceeded the rate of translocation with GTP. Moreover, the rates of the fusidic acid-dependent, elongation factor G-dependent binding of pppGpp and ppGpp to ribosomes were about 75 to 85% the rates of GTP and GDP binding, respectively. We also found that dGTP could substitute for GTP in all reactions examined.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
