Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Jul;119(1):62-9.
doi: 10.1128/jb.119.1.62-69.1974.

Inhibition of replication gap closure in Escherichia coli by near-ultraviolet light photoproducts of L-tryptophan

Inhibition of replication gap closure in Escherichia coli by near-ultraviolet light photoproducts of L-tryptophan

G Yoakum et al. J Bacteriol. 1974 Jul.

Abstract

Near-ultraviolet photoproducts of l-tryptophan (TP) differentially inhibited deoxyribonucleic acid (DNA) replication in wild-type cells and uvrA, polA1, and recA recB double mutants of Escherichia coli. Wild-type cells labeled in their DNA with [(3)H]thymidine in the presence of TP produced small pieces of DNA (7 x 10(6) daltons), which corresponded in size to late replicative intermediates of discontinuous DNA synthesis. Moreover, when TP was present, it took five times longer to chase the low-molecular-weight DNA pieces into high-molecular-weight DNA. The observation of replicative intermediates in the presence of TP, and their slow chase into high-molecular-weight DNA in the presence of TP, is strong evidence that TP stabilizes replication gaps in E. coli DNA. Although TP slowed DNA replication in wild-type cells, this effect was transient and DNA synthesis eventually resumed at a normal rate. However, in polA1 and recA recB mutants, DNA synthesis was completely inhibited. Determinations of size and total counts of cells incubated in TP suggested that TP uncouples cell division from DNA replication in recA recB mutants, whereas these processes remain coupled in wild-type cells and in uvrA and polA1 mutants. The slow chase of TP-stabilized pieces of DNA in the presence of TP suggested that the selective effect of TP on DNA synthesis and viability in repair-deficient mutants is a result of TP inhibition of replication gap closure.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1611-7 - PubMed
    1. Proc Natl Acad Sci U S A. 1968 Feb;59(2):598-605 - PubMed
    1. J Bacteriol. 1968 May;95(5):1627-33 - PubMed
    1. J Bacteriol. 1968 Oct;96(4):1214-24 - PubMed
    1. J Bacteriol. 1969 Oct;100(1):260-8 - PubMed

MeSH terms

LinkOut - more resources