Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Dec;120(3):1227-37.
doi: 10.1128/jb.120.3.1227-1237.1974.

Replication of the bacteriocinogenic plasmid Clo DF13 in thermosensitive Escherichia coli mutants defective in initiation or elongation of deoxyribonucleic acid replication

Replication of the bacteriocinogenic plasmid Clo DF13 in thermosensitive Escherichia coli mutants defective in initiation or elongation of deoxyribonucleic acid replication

E Veltkamp et al. J Bacteriol. 1974 Dec.

Abstract

The replication of the bacteriocinogenic plasmid Clo DF13 has been studied in the seven temperature-sensitive Escherichia coli mutants defective in deoxyribonucleic acid (DNA) replication (dnaA-dnaG). Experiments with dna initiation mutants revealed that the replication of the Clo DF13 plasmid depends to a great extent on the host-determined dnaC (dnaD) gene product, but depends slightly on the dnaA gene product. The synthesis of Clo DF13 plasmid DNA also requires the dnaF and dnaG gene products, which are involved in the elongation of chromosomal DNA replication. In contrast, the Clo DF13 plasmid is able to replicate in the dnaB and dnaE elongation mutants at the restrictive temperature. When de novo protein synthesis is inhibited by chloramphenicol in wild-type cells, the Clo DF13 plasmid continues to replicate for at least 12 h, long after chromosomal DNA synthesis has ceased, resulting in an accumulation of Clo DF13 DNA molecules of about 500 copies per cell. After 3 h of chloramphenicol treatment, the Clo DF13 plasmid replicates at a rate approximately five times the rate in the absence of chloramphenicol. Inhibition of protein synthesis by chloramphenicol does not influence the level of Clo DF13 DNA synthesis at the restrictive temperature in the dna mutants, except for the dnaA mutant. Chloramphenicol abolishes the inhibition of Clo DF13 DNA synthesis in the dnaA mutant at the nonpermissive temperature. Under these conditions, Clo DF13 DNA synthesis was slightly stimulated in the first 30 min after the temperature shift, and continued for more than 3 h at an almost uninhibited level.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159-66 - PubMed
    1. Nat New Biol. 1972 Dec 20;240(103):237-40 - PubMed
    1. Nat New Biol. 1971 Dec 29;234(52):285-6 - PubMed
    1. Eur J Biochem. 1970 Aug;15(2):311-20 - PubMed
    1. Mol Gen Genet. 1973;121(1):71-5 - PubMed

LinkOut - more resources