Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1972 Oct;51(10):2653-62.
doi: 10.1172/JCI107083.

Carbonic anhydrase function and the epithelial organization of H+ secretion in turtle urinary bladder

Carbonic anhydrase function and the epithelial organization of H+ secretion in turtle urinary bladder

J H Schwartz et al. J Clin Invest. 1972 Oct.

Abstract

The function of carbonic anhydrase in H(+) secretion by the turtle bladder was studied in vitro. Dose response curves were obtained for the carbonic anhydrase inhibitors, acetazolamide and ethoxzolamide, with and without addition of CO(2) to the system. In addition, carbonic anhydrase was assayed in homogenates of mucosal cells. The activity in the homogenates was 155+/-16 U/g dry wt, of which only 11 U represented contamination from erythrocytes; after addition of 5 x 10(-6)m acetazolamide, no enzyme activity was detectable. In the intact preparation free of exogenous CO(2), the dose response curve for acetazolamide showed two plateaus of inhibition, one at 50% and one at more than 80% inhibition. At 50% inhibition (from 5 x 10(-6) to 5 x 10(-5)m acetazolamide), H(+) secretion was restored or enhanced by CO(2) addition to the same extent as bladders not exposed to acetazolamide. At concentrations of more than 1 x 10(-4)m, H(+) secretion was no longer restorable by CO(2). Unlike acetazolamide, ethoxzolamide caused progressive inhibition of H(+) secretion in the CO(2)-free system. The maximal extent of inhibition with ethoxzolamide and the behavior of inhibition in the presence of 2.5% CO(2) were the same as for acetazolamide. Evidence is presented that all surface epithelial cells secrete H(+) and generate OH(-) within the cell interior. The capacity of cells to dispose of OH(-) by CO(2) hydroxylation varies with the availability of cytoplasmic carbonic anhydrase. A small population of cells contains abundant carbonic anhydrase and secretes at high rates even when CO(2) is in short supply. On the basis of these results and histochemical data on the distribution of carbonic anhydrase within the mucosa, an analysis is presented of the epithelial organization of acidification by the turtle bladder.

PubMed Disclaimer

References

    1. J Pharmacol Exp Ther. 1960 Sep;130:26-9 - PubMed
    1. Blood. 1956 Apr;11(4):380-3 - PubMed
    1. Biochim Biophys Acta. 1970;219(1):248-50 - PubMed
    1. Acta Physiol Scand. 1968 Aug;73(4):427-34 - PubMed
    1. J Histochem Cytochem. 1972 Jul;20(7):548-51 - PubMed

MeSH terms