Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 May;290(2):507-23.
doi: 10.1113/jphysiol.1979.sp012787.

Calcium-dependent potentials in the mammalian sympathetic neurone

Calcium-dependent potentials in the mammalian sympathetic neurone

D A McAfee et al. J Physiol. 1979 May.

Abstract

1. Intracellular recordings from post-ganglionic neurones of the rat superior cervical ganglion revealed two non-synaptic potentials dependent upon Ca2+, a hyperpolarizing afterpotential (h.a.p.) and a tetrodotoxin (TTX)-insensitive spike. 2. The h.a.p. followed regeneration discharge of the membrane potential in normal and TTX-containing Locke solution. 3. The h.a.p. appeared to arise from an increased K+ conductance because it was associated with a decrease in input resistance, reversed at -90 mV, and was proportional in magnitude to the extracellular K+ concentration. 4. Tetraethylammonium (TEA) and 4-aminopyridine (4-AP) apparently antagonized a voltage-sensitive K+ conductance because they broadened the action potential. However, these substances reduced only slightly the peak amplitude and earliest phases of the h.a.p. 5. The TTX-insensitive spike was most apparent when TEA was present and was invariably followed by an h.a.p. with a magnitude proportional to that of the spike. 6. The magnitude of the h.a.p. and the TTX-insensitive spike was directly proportional to the external Ca2+ concentration and was antagonized by Co2+ and Mn2+ in a dose-dependent fashion. 7. In normal Locke solution, Ba2+ antagonized the h.a.p. and allowed the neurone to sustain discharge during prolonged depolarization. In Locke solution containing TTX and TEA, Ba2+ reduced the magnitude of the h.a.p. but greatly increased the duration of the TTX-insensitive spike. 8. The h.a.p. was not significantly affected by altering external Cl- concentration and the TTX-insensitive spike was not reduced by altering external Na+ concentration. 9. It is concluded that the post-ganglionic neurone supports a regenerative Ca2+ conductance mechanism which in turn triggers an increased K+ conductance. The h.a.p. appears to result from outward K+ current in both a Ca2+ and voltage-dependent fashion.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Gen Physiol. 1964 Sep;48:141-62 - PubMed
    1. J Physiol. 1957 Jul 11;137(2):218-44 - PubMed
    1. J Physiol. 1977 Sep;270(3):545-68 - PubMed
    1. J Physiol. 1978 Feb;275:357-76 - PubMed
    1. J Physiol. 1977 May;267(2):497-518 - PubMed

Publication types

LinkOut - more resources