Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1973 Feb;228(3):693-712.
doi: 10.1113/jphysiol.1973.sp010107.

Effects of electrogenic sodium pumping on the membrane potential of longitudinal smooth muscle from terminal ileum of guinea-pig

Effects of electrogenic sodium pumping on the membrane potential of longitudinal smooth muscle from terminal ileum of guinea-pig

T B Bolton. J Physiol. 1973 Feb.

Abstract

1. The membrane potential of the separated longitudinal muscle of the guinea-pig terminal ileum was recorded intracellularly with glass micro-electrodes.2. In tissues kept at room temperature and then brought to 35 degrees C for 15-30 min or about 1 hr, the fall in membrane potential upon changing to potassium-free solution was 21.4 +/- 3.5 mV and 13.4 +/- 1.8 mV respectively. Ouabain (1.7 x 10(-6)M) produced a fall in membrane potential of 8.1 +/- 1.1 mV. Returning potassium to potassium-free solution, or changing from ouabain-containing to ouabain-free solution, resulted in an increase in membrane potential which was greater than the initial fall.3. Readmitting potassium to potassium-free solution produced an increase in membrane potential which began within 10 sec and reached a maximum within 15-30 sec. This response was reduced, abolished, or converted to a depolarization by ouabain. In chloride-deficient (13 mM) solution in which membrane resistance was increased, the response to readmitting potassium was increased 2(1/2)-fold so that the membrane potential sometimes exceeded -100 mV, which was probably more negative than E(K). On the basis of these results it was assumed that the response to readmitting potassium was due to the electrogenic activity of the sodium pump.4. The response to briefly readmitting a fixed concentration of potassium increased during the first 30 min in potassium-free solution. This increase was not due to an increase in membrane resistance as this fell with time in potassium-free solution. It was suggested that the increase in the response resulted from the progressive rise in internal sodium concentration which is known to occur in smooth muscle in potassium-free solution.5. Increasing the concentration of potassium over the range approximately 0.1-20 mM, increased the size of the electrogenic potential observed upon readmitting potassium to potassium-free solution. There was a fall in membrane resistance upon readmitting potassium (0.6, 5.9, or 20 mM) which was greater the larger the concentration of potassium. When allowance was made for the fall in membrane resistance, the dependency of the electrogenic response upon the concentration of potassium over the range 0.6-20 mM was much increased.6. The results indicate that the rate of electrogenic sodium pumping in this tissue is increased by increasing the external potassium concentration, and probably by increasing the internal sodium concentration. It was suggested that a rise in the latter could sensitize the pump to an increase in the former.

PubMed Disclaimer

References

    1. J Physiol. 1966 May;184(1):120-30 - PubMed
    1. J Physiol. 1966 Nov;187(1):105-27 - PubMed
    1. Comp Biochem Physiol. 1965 Jan;14:167-83 - PubMed
    1. J Physiol. 1971 Apr;214(2):225-43 - PubMed
    1. Nature. 1962 Mar 10;193:986-7 - PubMed

LinkOut - more resources