Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1973 May;134(1):167-82.
doi: 10.1042/bj1340167.

Microbial metabolism of amino alcohols. 1-Aminopropan-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a species of Pseudomonas

Microbial metabolism of amino alcohols. 1-Aminopropan-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a species of Pseudomonas

A Jones et al. Biochem J. 1973 May.

Abstract

1. Growth and manometric experiments showed that a Pseudomonas sp. P6 (N.C.I.B. 10431), formerly known as Achromobacter sp. P6, was capable of growth on both stereoisomers of 1-aminopropan-2-ol, and supported the hypothesis that assimilation involved metabolism to propionaldehyde, propionate and possibly 2-hydroxyglutarate. A number of alternative intermediary metabolites were ruled out. 2. Accumulation of propionaldehyde from 1-aminopropan-2-ol by intact cells occurred only during active growth, was transitory and was accompanied by morphological changes in the pseudomonad. 3. Enzymic and radioactive tracer evidence showed that 1-aminopropan-2-ol O-phosphate was the intermediate between amino alcohol and aldehyde. The operation of an inducibly formed ATP-amino alcohol phosphotransferase was established by measuring substrate disappearance, ADP formation and amino alcohol O-phosphate formation. This novel kinase had two activity peaks at about pH7 and 9. It acted on both l- and d-isomers of 1-aminopropan-2-ol, and also on l-threonine and ethanolamine, but had only low activity towards choline. The enzyme was partially purified by ion-exchange chromatography. 4. An amino alcohol O-phosphate phospho-lyase (deaminating) produced propionaldehyde from dl- and d-1-aminopropan-2-ol O-phosphate, and also formed acetaldehyde less rapidly from ethanolamine O-phosphate. It had optimum activity at about pH8 in Tris-HCl buffers. The enzyme was partially purified and evidence was obtained that a single enzyme was responsible for both activities. Apparent K(m) values for the substrates were determined. Activity was inhibited by dl-threonine O-phosphate, dl-serine O-phosphate, choline O-phosphate and P(i). Enzyme formation was induced by growth with either amino alcohol substrate. 5. Radioactive tracer experiments with dl-1-amino[3-(14)C]propan-2-ol confirmed the operation of the amino alcohol kinase and demonstrated coupling with the phospho-lyase enzyme in vitro to produce [(14)C]-propionaldehyde. 6. An aldehyde dehydrogenase, found in extracts of the pseudomonad after growth on 1-aminopropan-2-ol, was characterized and concluded to be responsible for propionaldehyde and acetaldehyde oxidation. The enzyme was inactive with methylglyoxal. 7. Propionate and acetate were concluded to be metabolized via propionyl-CoA and acetyl-CoA, and studies were made of a CoA ester synthase found in extracts. 8. Studies of a strain of Pseudomonas putida N.C.I.B. 10558 suggested that 1-aminopropan-2-ols were metabolized via their O-phosphates, propionaldehyde and propionate. Amino alcohol kinase activity was detected and extracts contained a phospho-lyase showing higher activity with the 1-aminopropan-2-ol O-phosphate than with ethanolamine O-phosphate.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochem J. 1966 May;99(2):427-33 - PubMed
    1. J Chromatogr. 1965 Dec;20(3):528-40 - PubMed
    1. Biochem J. 1967 Jul;104(1):112-21 - PubMed
    1. Biochem J. 1968 Mar;107(1):19-28 - PubMed
    1. Biochem J. 1967 Nov;105(2):497-503 - PubMed

MeSH terms