Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Sep;237(3):H332-41.
doi: 10.1152/ajpheart.1979.237.3.H332.

Uncoupling cation effects on cardiac contractility and sarcolemmal Ca2+ binding

Uncoupling cation effects on cardiac contractility and sarcolemmal Ca2+ binding

D M Bers et al. Am J Physiol. 1979 Sep.

Abstract

Studies have been performed correlating the effects of cationic uncouplers on intact cardiac muscle and on Ca2+ bound to isolated cardiac plasma membranes. Sarcolemmal vesicles were isolated from neonatal rat hearts. Ca2+ binding experiments were performed and Scatchard plot analysis indicated two classes of Ca2+ binding sites. The ability of certain cations to displace Ca2+ bound to these vesicles was measured. The effects of these same cations on the tension developed by neonatal rat papillary muscles and on the Ca2+ content of tissue culture cells (from neonatal rat heart) were measured. The results show that a) the selectivity sequence (Y3+ greater than Nd3+ greater than La3+, Cd2+ greater than Co2+ greater than Mg2+) of sarcolemmal Ca2+ binding sites is the same as the effective uncoupling sequence; b) the amount of Ca2+ bound at these sites (approximately 700 micromol/kg wet wt) is more than adequate to support tension development; c) the dependence of sarcolemmal Ca2+ binding at low-affinity sites and tension development on [Ca2+]o is essentially the same. It is then reasonable to propose that the Ca2+ bound to these sarcolemmal sites plays an important role in controlling the amount of Ca2+ available to the myofilaments and thus myocardial contractility.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources