Time-resolved resonance Raman characterization of the bO640 intermediate of bacteriorhodopsin. Reprotonation of the Schiff base
- PMID: 476072
- DOI: 10.1021/bi00583a030
Time-resolved resonance Raman characterization of the bO640 intermediate of bacteriorhodopsin. Reprotonation of the Schiff base
Abstract
The resonance Raman spectrum of photolyzed bacteriorhodopsin under conditions known to increase the concentration of the bO640 intermediate in both H2O and D2O is presented. By use of computer subtraction techniques and a knowledge of the Raman spectra of the unphotolyzed bacteriorhodopsin as well as the other intermediates in the cycle, a qualitative spectrum of bO640 is determined. The shift of a band at 1630 cm-1 in H2O to 1616 cm-1 in D2O suggests that the Schiff base of bO640 is protonated. Additional bands at 947, 965, and 992 cm-1 that appear only in D2O suspensions confirm that a proton is coupled to the retinal chromophore of bO640. The reprotonation of the Schiff base thus occurs during the bM412 to bO640 step. The fingerprint region, sensitive to the isomeric configuration of the retinal chromophore of bO640, is dissimilar to the fingerprint regions of published model compounds and other forms of bacteriorhodopsin.
Similar articles
-
Time-resolved resonance Raman characterization of the bL550 intermediate and the two dark-adapted bRDA/560 forms of bacteriorhodopsin.Biophys J. 1979 Jun;26(3):527-41. doi: 10.1016/S0006-3495(79)85269-8. Biophys J. 1979. PMID: 262430 Free PMC article.
-
Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy.J Biol Chem. 1989 Nov 5;264(31):18280-3. J Biol Chem. 1989. PMID: 2808377
-
Time-resolved resonance Raman spectroscopy of bacteriorhodopsin on the millisecond timescale.Proc Natl Acad Sci U S A. 1977 Dec;74(12):5212-6. doi: 10.1073/pnas.74.12.5212. Proc Natl Acad Sci U S A. 1977. PMID: 271946 Free PMC article.
-
Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump.Biochim Biophys Acta. 2000 Aug 30;1460(1):133-56. doi: 10.1016/s0005-2728(00)00135-3. Biochim Biophys Acta. 2000. PMID: 10984596 Review.
-
Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin.Biochim Biophys Acta. 2004 Jul 23;1658(1-2):72-9. doi: 10.1016/j.bbabio.2004.03.015. Biochim Biophys Acta. 2004. PMID: 15282177 Review.
Cited by
-
The opsin family of proteins.Biochem J. 1986 Sep 15;238(3):625-42. doi: 10.1042/bj2380625. Biochem J. 1986. PMID: 2948499 Free PMC article. Review. No abstract available.
-
Subpicosecond resonance Raman spectra of the early intermediates in the photocycle of bacteriorhodopsin.Biophys J. 1990 Jul;58(1):135-41. doi: 10.1016/S0006-3495(90)82359-6. Biophys J. 1990. PMID: 19431759 Free PMC article.
-
Infra-red and Raman spectroscopic studies of enzyme structure and function.Biochem J. 1986 Jan 1;233(1):25-36. doi: 10.1042/bj2330025. Biochem J. 1986. PMID: 3513759 Free PMC article. Review. No abstract available.
-
Investigations of the rhodopsin/Meta I and rhodopsin/Meta II transitions of bovine rod outer segments by means of kinetic infrared spectroscopy.Biophys Struct Mech. 1980;6(2):147-64. doi: 10.1007/BF00535751. Biophys Struct Mech. 1980. PMID: 7388123
-
Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.J Membr Biol. 1985;85(2):95-109. doi: 10.1007/BF01871263. J Membr Biol. 1985. PMID: 4009698