Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Aug 21;18(17):3764-8.
doi: 10.1021/bi00584a019.

Conformation of the active site of thiolsubtilisin: reaction with specific chloromethyl ketones and arylacryloylimidazoles

Conformation of the active site of thiolsubtilisin: reaction with specific chloromethyl ketones and arylacryloylimidazoles

I H Tsai et al. Biochemistry. .

Abstract

The conformation of the active site of thiolsubtilisin, prepared from subtilisin by transformation of the active site Ser to Cys, was compared with that of subtilisin by kinetic and spectroscopic methods. Carbobenzyloxy-L-alanylglycyl-L-phenylalanine chloromethyl ketone inhibited thiolsubtilisin approximately 10(2) times faster than subtilisin; alkylation occurred at the sulfhydryl rather than the imidazolyl group of the active site. pH dependence of the inhibition is different from that of the reaction between a simple thiol with haloacetamide. Furthermore, several native chromophoric arylacryloyl-thiolsubtilisins and arylacryloyl-subtilisins showed similar red shifts when compared with their denatured forms. The rate of deacylation of arylacryloyl-thiolsubtilisins was faster than (or of the same order of magnitude as) the deacylation rate of the analogous arylacryloyl-subtilisins in 30% dioxane (v/v), pH 5--10. The deacylation rate--pH profiles of these arylacryloyl-thiolsubtilisins in 30% dioxane all give pK values of 7.7 which is identical with the pK in the deacylation of acyl-subtilisins. These facts strongly suggest that the active-site conformation remains intact on conversion from subtilisin to thiolsubtilisin. The low esterase and peptidase activities of thiolsubtilisin are most likely due to the relatively low basicity of -SH (compared with -OH).

PubMed Disclaimer

Similar articles

Cited by

Publication types