Conformation of the active site of thiolsubtilisin: reaction with specific chloromethyl ketones and arylacryloylimidazoles
- PMID: 476086
- DOI: 10.1021/bi00584a019
Conformation of the active site of thiolsubtilisin: reaction with specific chloromethyl ketones and arylacryloylimidazoles
Abstract
The conformation of the active site of thiolsubtilisin, prepared from subtilisin by transformation of the active site Ser to Cys, was compared with that of subtilisin by kinetic and spectroscopic methods. Carbobenzyloxy-L-alanylglycyl-L-phenylalanine chloromethyl ketone inhibited thiolsubtilisin approximately 10(2) times faster than subtilisin; alkylation occurred at the sulfhydryl rather than the imidazolyl group of the active site. pH dependence of the inhibition is different from that of the reaction between a simple thiol with haloacetamide. Furthermore, several native chromophoric arylacryloyl-thiolsubtilisins and arylacryloyl-subtilisins showed similar red shifts when compared with their denatured forms. The rate of deacylation of arylacryloyl-thiolsubtilisins was faster than (or of the same order of magnitude as) the deacylation rate of the analogous arylacryloyl-subtilisins in 30% dioxane (v/v), pH 5--10. The deacylation rate--pH profiles of these arylacryloyl-thiolsubtilisins in 30% dioxane all give pK values of 7.7 which is identical with the pK in the deacylation of acyl-subtilisins. These facts strongly suggest that the active-site conformation remains intact on conversion from subtilisin to thiolsubtilisin. The low esterase and peptidase activities of thiolsubtilisin are most likely due to the relatively low basicity of -SH (compared with -OH).