Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1973 Aug;134(4):1001-8.
doi: 10.1042/bj1341001.

The acute action of ammonia on rat brain metabolism in vivo

The acute action of ammonia on rat brain metabolism in vivo

R A Hawkins et al. Biochem J. 1973 Aug.

Abstract

1. Acute NH(4) (+) toxicity was studied by using a new apparatus that removes and freezes the brains of conscious rats within 1s. 2. Brains were removed and frozen 5min after intraperitoneal injection of ammonium acetate (2-3min before the onset of convulsions). Arterial [NH(4) (+)] rose from less than 0.01 to 1.74mm at 4-5min. The concentrations of all glycolytic intermediates measured, except glucose 6-phosphate, were increased by the indicated percentage above the control value as follows: glucose (by 41%), fructose 1,6-diphosphate (by 133%), dihydroxyacetone phosphate (by 164%), alpha-glycerophosphate (by 45%), phosphoenolpyruvate (by 67%) and pyruvate (by 26%). 4. Citrate and alpha-oxoglutarate concentrations were unchanged and that of malate was increased (by 17%). 5. Adenine nucleotides and P(i) concentrations were unchanged but the concentration of creatine phosphate decreased slightly (by 6%). 6. Brain [NH(4) (+)] increased from 0.2 to 1.53mm. Net glutamine synthesis occurred at an average rate of 0.33mumol/min per g. 7. The rate of brain glucose utilization was measured in vivo as 0.62mumol/min per g in controls and 0.81mumol/min per g after NH(4) (+) injection. 8. The arteriovenous difference of glucose and O(2) increased by 35%. 9. No significant arteriovenous differences of glutamate or glutamine were detected. Thus, although much NH(4) (+) was incorporated into glutamine the latter was not rapidly released from the brain to the circulation. 10. Plasma [K(+)] increased from 3.3 to 5.4mm. 11. The results indicate that NH(4) (+) stimulates oxidative metabolism but does not interfere with brain energy balance. The increased rate of oxidative metabolism could not be accounted for only on the basis of glutamine synthesis. We suggest that increased extracellular [NH(4) (+)] and [K(+)] decreased the resting transmembrane potential and stimulated Na(+),K(+)-stimulated adenosine triphosphatase activity thus accounting for the increased metabolic rate.

PubMed Disclaimer

References

    1. J Biol Chem. 1966 Sep 10;241(17):3997-4003 - PubMed
    1. J Clin Invest. 1967 May;46(5):838-48 - PubMed
    1. Anal Biochem. 1966 Dec;17(3):369-76 - PubMed
    1. Life Sci. 1967 Jan 15;6(2):133-43 - PubMed
    1. Biochem J. 1967 May;103(2):514-27 - PubMed