Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Jun;63(6):675-89.
doi: 10.1085/jgp.63.6.675.

Effects of internal divalent cations on voltage-clamped squid axons

Effects of internal divalent cations on voltage-clamped squid axons

T Begenisich et al. J Gen Physiol. 1974 Jun.

Abstract

We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent with the notion that an increase in the internal calcium concentration produced by an inward calcium movement with the action potential triggers sodium inactivation or potassium activation. Low internal zinc concentrations ( approximately 1 mM) selectively and reversibly slow the kinetics of the potassium current and reduce peak sodium current by about 40% with little effect on the voltage dependence of the ionic currents. Higher concentrations ( approximately 10 mM) produce a considerable (ca. 90%) nonspecific reversible reduction of the ionic currents. Large hyperpolarizing conditioning pulses reduce the zinc effect. Internal zinc also reversibly depolarizes the axon by 20-30 mV. The effects of internal cobalt, cadmium, and nickel are qualitatively similar to those of zinc: only calcium among the cations tested is without effect.

PubMed Disclaimer

References

    1. Comp Biochem Physiol A Comp Physiol. 1972 Jun 1;42(2):493-9 - PubMed
    1. J Physiol. 1957 Sep 30;138(2):253-81 - PubMed
    1. J Physiol. 1952 Apr;116(4):449-72 - PubMed
    1. Biochim Biophys Acta. 1968 Sep 17;163(2):240-54 - PubMed
    1. Am J Physiol. 1967 Dec;213(6):1465-74 - PubMed