Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Apr;14(4):269-83.
doi: 10.1016/S0006-3495(74)85915-1.

Probing photosynthesis on a picosecond time scale. Evidence for photosystem I and photosystem II fluorescence in chloroplasts

Probing photosynthesis on a picosecond time scale. Evidence for photosystem I and photosystem II fluorescence in chloroplasts

M Seibert et al. Biophys J. 1974 Apr.

Abstract

Fluorescent emission kinetics of isolated spinach chloroplasts have been observed at room temperature with an instrument resolution time of 10 ps using a frequency doubled, mode-locked Nd:glass laser and an optical Kerr gate. At 685 nm two maxima are apparent in the time dependency of the fluorescence; the first occurs at 15 ps and the second at 90 ps after the flash. The intervening minimum occurs at about 50 ps. On the basis of theoretical models, lifetimes of the components associated with the two peaks and spectra (in escarole chloroplasts), the fluorescence associated with the first peak is interpreted as originating from Photosystem I (PSI) (risetime </=10 ps, lifetime </=10 ps) and the second peak from Photosystem II (PSII) (lifetime, 210 ps in spinach chloroplasts and 320 ps in escarole chloroplasts). The fact that there are two fluorescing components with a quantum yield ratio </=0.048 explains the previous discrepancy between the quantum yield of fluorescence measured in chloroplasts directly and that calculated from the lifetime of PSII. The 90 ps delay in the peak of PSII fluorescence is probably explained by energy transfer between accessory pigments such as carotenoids and Chl a. Energy spillover between PSI and PSII is not apparent during the time of observation. The results of this work support the view that the transfer of excitation energy to the trap complex in both photosystems occurs by means of a molecular excitation mechanism of intermediate coupling strength. Although triplet states are not of major importance in energy transfer to PSII traps, the possibility that they are involved in PSI photochemistry has not been eliminated.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1949 Jan;24(1):1-15 - PubMed
    1. Biophys J. 1966 May;6(3):305-12 - PubMed
    1. Biochim Biophys Acta. 1967;143(3):577-82 - PubMed
    1. Biochim Biophys Acta. 1967 Sep 6;143(2):332-9 - PubMed
    1. Biochem Biophys Res Commun. 1972 Jan 31;46(2):406-13 - PubMed

LinkOut - more resources