The ameba-to-flagellate transformation in Tetramitus rostratus. II. Microtubular morphogenesis
- PMID: 4861775
- PMCID: PMC2107145
- DOI: 10.1083/jcb.35.2.323
The ameba-to-flagellate transformation in Tetramitus rostratus. II. Microtubular morphogenesis
Abstract
Tetramitus exhibits independent ameboid and flagellate stages of remarkable morphological dichotomy. Transformation of the ameba involves the formation of four kinetosomes and their flagella. The arrangement of these kinetosomes and associated whorls of microtubules extending under the pellicle establishes the asymmetric flagellate form. While no recognizable kinetosomal precursors have been seen in amebae, and there is no suggestion of self-replication in dividing flagellates, developmental stages of kinetosomes have been identified. These are occasionally seen in association with the nucleus or with dense bodies which lie either inside of or close to the proximal end of the prokinetosome. Outgrowth of flagella involves formation of an axoneme and a membrane. From the distal tip of the kinetosome microtubules grow into a short bud, which soon forms an expanded balloon containing a reticulum of finely beaded filaments. The free ends of the microtubules appear unraveled; they are seen first as single elements, then as doublets, and finally are arranged into a cylinder. Growth in length is accompanied by a reduction in the diameter of the balloon. The concept that the formation of the kinetic apparatus might involve a nuclear contribution, followed by a spontaneous assembly of microtubules, is suggested.
Similar articles
-
Free kinetosomes in Austrialian flagellates. I. Types and spatial arrangement.J Cell Biol. 1972 Jul;54(1):39-55. doi: 10.1083/jcb.54.1.39. J Cell Biol. 1972. PMID: 5038874 Free PMC article.
-
Ultrastructure of the amoeboflagellate Tetramitus rostratus.J Protozool. 1983 May;30(2):445-55. doi: 10.1111/j.1550-7408.1983.tb02946.x. J Protozool. 1983. PMID: 6631783
-
Development of the flagellar apparatus of Naegleria.J Cell Biol. 1966 Oct;31(1):43-54. doi: 10.1083/jcb.31.1.43. J Cell Biol. 1966. PMID: 5971974 Free PMC article.
-
Transformation of Tetramitus amebae into flagellates.Science. 1970 Feb 27;167(3922):1269-70. doi: 10.1126/science.167.3922.1269. Science. 1970. PMID: 5411916
-
Basal bodies, but not centrioles, in Naegleria.J Cell Biol. 1971 Dec;51(3):826-36. doi: 10.1083/jcb.51.3.826. J Cell Biol. 1971. PMID: 4942778 Free PMC article.
Cited by
-
Ultrastructure of the amoebo-flagellate Protonaegleria westphali.Parasitol Res. 1987;74(1):23-9. doi: 10.1007/BF00534927. Parasitol Res. 1987. PMID: 3438290
-
The formation of basal bodies (centrioles) in the Rhesus monkey oviduct.J Cell Biol. 1971 Jul;50(1):10-34. doi: 10.1083/jcb.50.1.10. J Cell Biol. 1971. PMID: 4998200 Free PMC article.
-
The effect of colchicine on myogenesis in vivo in Rana pipiens and Rhodnius prolixus (Hemiptera).J Cell Biol. 1968 Dec;39(3):544-55. doi: 10.1083/jcb.39.3.544. J Cell Biol. 1968. PMID: 4177377 Free PMC article.
-
Insect sperm: their structure and morphogenesis.J Cell Biol. 1970 Feb;44(2):243-77. doi: 10.1083/jcb.44.2.243. J Cell Biol. 1970. PMID: 4903810 Free PMC article. Review. No abstract available.
-
Self-assembly of biological structures.Bacteriol Rev. 1969 Jun;33(2):302-45. doi: 10.1128/br.33.2.302-345.1969. Bacteriol Rev. 1969. PMID: 4896352 Free PMC article. Review. No abstract available.