Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine
- PMID: 4892368
- PMCID: PMC315307
- DOI: 10.1128/jb.98.3.1142-1150.1969
Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine
Abstract
Escherichia coli strains B/r and 2276 contain an active transport system for iron. The system is energy-dependent, repressed by excess iron in the growth medium, and capable of accumulating iron inside of the cells at concentrations 2,000-fold higher than those in the medium. Two tonB-trp deletion mutants, strains B/rlt and B/lt7, which are sensitive to chromic ion and require high levels of iron for normal growth, are deficient in this active transport system. A point mutant, strain Chr2, which is also sensitive to chromic ion and requires high levels of iron for growth, has the active uptake system but cannot synthesize a specific chelator for iron, 2,3-dihydroxybenzoylserine (DHBS). Evidence is presented to support the hypothesis that both the active uptake system and chelation of iron by DHBS play a role in iron uptake from iron-deficient medium. The chromium sensitivity of the mutants can be explained by inhibition of uptake of exogenous iron.
Similar articles
-
Iron transport in Escherichia coli: relationship between chromium sensitivity and high iron requirement in mutants of Escherichia coli.J Bacteriol. 1969 Jun;98(3):1135-41. doi: 10.1128/jb.98.3.1135-1141.1969. J Bacteriol. 1969. PMID: 4892367 Free PMC article.
-
An additional step in the transport of iron defined by the tonB locus of Escherichia coli.J Biol Chem. 1971 Apr 10;246(7):2147-51. J Biol Chem. 1971. PMID: 4929287 No abstract available.
-
Mutual inhibition of cobalamin and siderophore uptake systems suggests their competition for TonB function.J Bacteriol. 1995 Sep;177(17):4829-35. doi: 10.1128/jb.177.17.4829-4835.1995. J Bacteriol. 1995. PMID: 7665457 Free PMC article.
-
Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric-enterochelin esterase.J Bacteriol. 1972 Dec;112(3):1142-9. doi: 10.1128/jb.112.3.1142-1149.1972. J Bacteriol. 1972. PMID: 4565531 Free PMC article.
-
Iron uptake by Escherichia coli.Front Biosci. 2003 Sep 1;8:s1409-21. doi: 10.2741/1232. Front Biosci. 2003. PMID: 12957834 Review.
Cited by
-
Mutations affecting iron transport in Escherichia coli.J Bacteriol. 1970 Oct;104(1):219-26. doi: 10.1128/jb.104.1.219-226.1970. J Bacteriol. 1970. PMID: 4919746 Free PMC article.
-
Manganese transport in Bacillus subtilis W23 during growth and sporulation.J Bacteriol. 1973 Mar;113(3):1363-72. doi: 10.1128/jb.113.3.1363-1372.1973. J Bacteriol. 1973. PMID: 4632400 Free PMC article.
-
Relationship between the tonB locus and iron transport in Escherichia coli.J Bacteriol. 1975 Nov;124(2):704-12. doi: 10.1128/jb.124.2.704-712.1975. J Bacteriol. 1975. PMID: 126991 Free PMC article.
-
In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis.Proc Natl Acad Sci U S A. 2008 May 13;105(19):6858-63. doi: 10.1073/pnas.0712073105. Epub 2008 May 5. Proc Natl Acad Sci U S A. 2008. PMID: 18458342 Free PMC article.
-
Selectivity of ferric enterobactin binding and cooperativity of transport in gram-negative bacteria.J Bacteriol. 1998 Dec;180(24):6689-96. doi: 10.1128/JB.180.24.6689-6696.1998. J Bacteriol. 1998. PMID: 9852016 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases