Genetic and molecular characteristics of X-ray-sensitive mutants of Escherichia coli defective in repair synthesis
- PMID: 4923076
- PMCID: PMC285071
- DOI: 10.1128/jb.104.2.871-881.1970
Genetic and molecular characteristics of X-ray-sensitive mutants of Escherichia coli defective in repair synthesis
Abstract
Alleles responsible for X-ray-sensitive characteristics of three mutants of Escherichia coli B, which were also sensitive to ultraviolet (UV) irradiation, were mapped near metE locus, and named res-1, res-2, and res-3. All the res(-) mutants showed no host cell reactivability (Hcr(-)) for transducing deoxyribonucleic acid (DNA) of P1 phage irradiated by UV but they were Hcr(+) for infective DNA of P1 phage. Furthermore, they showed no detectable activity of DNA polymerase. Characteristics of allele res-1 were studied in detail. The mutant res-1 uvr(+) showed an extensive degradation of DNA after UV irradiation. Double mutants carrying res-1 uvrA(-), res-1 uvrB(-), and res-1 uvrC(-) showed no marked increase in UV sensitivity beyond that of the uvr(-) single mutants and only negligible UV-induced DNA degradation. The uvr(-) mutations showed no such suppressive effect on DNA degradation induced by X rays in these double mutants. It is concluded that res(-) mutants are defective in the second step (repair synthesis) of the excision repair process and that DNA polymerase is partly responsible for the assumed resynthesis step.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
