Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1967 Jun;103(3):816-30.
doi: 10.1042/bj1030816.

The origin of the polydispersity in sedimentation patterns of rapidly labelled nuclear ribonucleic acid

The origin of the polydispersity in sedimentation patterns of rapidly labelled nuclear ribonucleic acid

M E Bramwell et al. Biochem J. 1967 Jun.

Abstract

1. A study was made of the sedimentation properties of purified preparations of the rapidly labelled RNA in the nucleus and the cytoplasm of the HeLa cell. The sedimentation of the rapidly labelled nuclear RNA was very sensitive to changes in ionic strength and bivalent cation concentration. Under the conditions usually used in sucrose-density-gradient centrifugation the rapidly labelled nuclear RNA showed extreme polydispersity, and much of it sedimented more rapidly than the 28s RNA. At low ionic strength and after removal of Mg(2+), however, the rapidly labelled nuclear RNA sedimented as a single peak at about 16s. The conversion of the polydisperse material into the 16s form did not involve degradation of the RNA, since the effect could be reversed by increasing the ionic strength of the solution. 2. The cytoplasm did not contain any RNA that showed polydisperse sedimentation under the usual conditions of sucrose-density-gradient centrifugation, or that had the same sensitivity as the rapidly labelled nuclear RNA to changes in ionic strength. All the radioactivity in the cytoplasmic RNA sedimented with the 28s, 16s and 4s components over a wide range of physical conditions, but these components did contain a labelled fraction with some of the features of the rapidly labelled nuclear RNA on columns of methylated albumin on kieselguhr. 3. In both nucleus and cytoplasm the RNA detected by ultraviolet absorption could also be converted into a 16s form by removal of bivalent cations at low ionic strength; this effect was again, within certain limits, reversible. The nuclear RNA as a whole was more susceptible to changes in ionic strength than the cytoplasmic RNA. 4. It thus appears that all the RNA in the cell, except the 4s RNA, can be prepared, without degradation, as a single peak sedimenting at about 16s. The relationship of these various 16s components to each other is discussed.

PubMed Disclaimer

References

    1. J Mol Biol. 1966 Sep;20(1):145-82 - PubMed
    1. Exp Cell Res. 1964 Apr;34:239-42 - PubMed
    1. Biochim Biophys Acta. 1964 Jul 22;87:388-96 - PubMed
    1. Biophys J. 1964 Jul;4:267-84 - PubMed
    1. Biochim Biophys Acta. 1965 Feb 8;95:329-40 - PubMed