Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Oct 25;564(3):372-89.
doi: 10.1016/0005-2787(79)90029-7.

Organisation of inverted repeat sequences in hamster cell nuclear DNA

Organisation of inverted repeat sequences in hamster cell nuclear DNA

N Hardman et al. Biochim Biophys Acta. .

Abstract

Hamster cell nuclear DNA is shown to contain inverted repeat (foldback) sequences, in some respects similar to the foldback fraction in DNA from other animal cell types. Using electron microscopy the majority of foldback duplexes are shown to be located in simple hairpin-like DNA structures, formed from individual pairs of complementary inverted repeated sequences 50--1000 nucleotides in length, in some cases arranged in tandem, and in other cases separated by intervening sequences, up to 16000 nucleotide residues long. In addition, a novel class of foldback structure, referred to as 'bubbled hairpins' is reported, which appear to be formed from clusters of inverted repeat sequences that are separated from adjacent clusters of complementary inverted repeats by large intervening sequences which vary in length from 5000 to over 20000 nucleotide residues. Due to the special pattern of distribution of these latter inverted repeat sequences, 'bubbled hairpins' are observed only in long foldback DNA. Evidence is presented that the distribution of foldback sequences in hamster cell DNA is highly ordered. The lengths of the intervening single chains in foldback structures appear to vary non-randomly. This gives rise to a localised periodic pattern of organisation that is believed to be a consequence of regular alternating arrangements of foldback and non-foldback sequences in the segments of DNA from which foldback structures are derived.

PubMed Disclaimer

LinkOut - more resources