Membrane permeability. Generalization of the reflection coefficient method of describing volume and solute flows
- PMID: 5019478
- PMCID: PMC1484119
- DOI: 10.1016/S0006-3495(72)86093-4
Membrane permeability. Generalization of the reflection coefficient method of describing volume and solute flows
Abstract
The reflection coefficient method for describing volume and solute fluxes through membranes is generalized to take into account the nonideality of the solutions bathing the membrane and/or multicomponent systems. The reflection coefficient of the impermeable species in these systems is less than unity by a coefficient gamma. The reflection coefficient obtained solely from the volume flow equation, sigma(v), will always be less than the reflection coefficient obtained from the solute flow equation, sigma(8) (v). These two coefficients are related by sigma(8) (v) = sigma(v) + gamma.
Similar articles
-
Dilute solution approximation and generalization of the reflection coefficient method of describing volume and solute flows.Biophys J. 1973 Sep;13(9):994-9. doi: 10.1016/S0006-3495(73)86038-2. Biophys J. 1973. PMID: 4733703 Free PMC article.
-
General continuum analysis of transport through pores. I. Proof of Onsager's reciprocity postulate for uniform pore.Biophys J. 1975 Jun;15(6):533-51. doi: 10.1016/S0006-3495(75)85836-X. Biophys J. 1975. PMID: 1148357 Free PMC article.
-
Kinetic model of osmosis through semipermeable and solute-permeable membranes.Acta Physiol Scand. 2003 Feb;177(2):107-17. doi: 10.1046/j.1365-201X.2003.01062.x. Acta Physiol Scand. 2003. PMID: 12558549
-
The use of linear nonequilibrium thermodynamics in the study of renal physiology.Am J Physiol. 1979 Mar;236(3):F211-9. doi: 10.1152/ajprenal.1979.236.3.F211. Am J Physiol. 1979. PMID: 371416 Review.
-
Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism.Cryobiology. 1998 Dec;37(4):271-89. doi: 10.1006/cryo.1998.2135. Cryobiology. 1998. PMID: 9917344 Review.
Cited by
-
Measurements of transepithelial electrical resistance (TEER) are affected by junctional length in immature epithelial monolayers.Histochem Cell Biol. 2021 Dec;156(6):609-616. doi: 10.1007/s00418-021-02026-4. Epub 2021 Aug 30. Histochem Cell Biol. 2021. PMID: 34459960 Free PMC article.
-
Thermodynamic model equations for heterogeneous multicomponent non-ionic solution transport in a multimembrane system.J Biol Phys. 1999 Dec;25(4):289-308. doi: 10.1023/A:1005172400390. J Biol Phys. 1999. PMID: 23345704 Free PMC article.
-
Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. I. Inequality of reflection coefficients for volume flow and solute flow.Biophys J. 1981 Jun;34(3):535-44. doi: 10.1016/S0006-3495(81)84866-7. Biophys J. 1981. PMID: 7248473 Free PMC article.
-
Membrane Transport Generated by the Osmotic and Hydrostatic Pressure. Correlation Relation for Parameters L(p), σ, and ω.J Biol Phys. 2000 Dec;26(4):307-20. doi: 10.1023/A:1010347316061. J Biol Phys. 2000. PMID: 23345729 Free PMC article.
-
Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation.Biophys J. 2009 Apr 8;96(7):2559-71. doi: 10.1016/j.bpj.2008.12.3929. Biophys J. 2009. PMID: 19348741 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources