Current-voltage curves of porous membranes in the presence of pore-blocking ions. I. Narrow pores containing no more than one moving ion
- PMID: 5029432
- PMCID: PMC1484159
- DOI: 10.1016/S0006-3495(72)86112-5
Current-voltage curves of porous membranes in the presence of pore-blocking ions. I. Narrow pores containing no more than one moving ion
Abstract
We propose a physical model for voltage-dependent conductance changes of excitable cell membranes. It is based on competition of uni- and bivalent ions for chains of stable sites extending through the membrane. These one-dimensional pathways (pores) have different profiles of chemical potential for the two ionic species so that bivalent ions can block the passage of univalent ions at large membrane potentials. We treat the special case that each pore is either empty or, because of electrostatic repulsion, contains no more than one uni- or bivalent ion at a time. A system of linear differential equations describes the time-dependent probabilities of the various possible pore states. The states are limited by transition rate constants involving the profile of the chemical potential, the membrane voltage, the ionic concentrations in the adjacent baths, and electrostatic interactions between the ions. The steady-state solutions (Kirchhoff-Hill theorem) yield expressions for the relationship between the small signal conductance of univalent ions and the concentration of these ions in the external bathing medium (a saturation curve) and for the ionic currents and the steady-state current-voltage curve (N-shaped). From the latter curve we compute the shift of theshold potential caused by concentration changes of the external bathing medium. The model yields a number of predictions which can be tested experimentally.
Similar articles
-
Molecular aspects of electrical excitation in lipid bilayers and cell membranes.Horiz Biochem Biophys. 1976;2:230-84. Horiz Biochem Biophys. 1976. PMID: 776770 Review.
-
Potassium channels as multi-ion single-file pores.J Gen Physiol. 1978 Oct;72(4):409-42. doi: 10.1085/jgp.72.4.409. J Gen Physiol. 1978. PMID: 722275 Free PMC article.
-
Interactions of permeant cations with sodium channels of squid axon membranes.Biophys J. 1985 Sep;48(3):361-8. doi: 10.1016/S0006-3495(85)83792-9. Biophys J. 1985. PMID: 2412601 Free PMC article.
-
The excitable membrane. A physiochemical model.Biophys J. 1972 Dec;12(12):1583-629. doi: 10.1016/S0006-3495(72)86185-X. Biophys J. 1972. PMID: 4655662 Free PMC article.
-
The behaviour of ions in narrow water-filled pores.Biosci Rep. 1998 Dec;18(6):313-27. doi: 10.1023/a:1020209332415. Biosci Rep. 1998. PMID: 10357174 Review.
Cited by
-
Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells.J Physiol. 1987 Jun;387:251-72. doi: 10.1113/jphysiol.1987.sp016572. J Physiol. 1987. PMID: 2443681 Free PMC article.
-
Dependence of ion flow through channels on the density of fixed charges at the channel opening. Voltage control of inverse titration curves.Biophys J. 1982 Jul;39(1):15-22. doi: 10.1016/S0006-3495(82)84485-8. Biophys J. 1982. PMID: 6286002 Free PMC article.
-
Ionic selectivity, saturation and block in gramicidin A channels: I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states.J Membr Biol. 1977 Mar 23;31(4):383-47. doi: 10.1007/BF01869414. J Membr Biol. 1977. PMID: 66317
-
Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel.Biophys J. 1978 May;22(2):221-48. doi: 10.1016/S0006-3495(78)85486-1. Biophys J. 1978. PMID: 77688 Free PMC article.
-
Cationic selectivity and competition at the sodium entry site in frog skin.J Gen Physiol. 1980 Aug;76(2):233-47. doi: 10.1085/jgp.76.2.233. J Gen Physiol. 1980. PMID: 6251157 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources