Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1971 Nov;50(11):2355-67.
doi: 10.1172/JCI106734.

The mechanism of decreased intestinal sodium and water absorption after acute volume expansion in the rat

The mechanism of decreased intestinal sodium and water absorption after acute volume expansion in the rat

M H Humphreys et al. J Clin Invest. 1971 Nov.

Abstract

Studies were performed in rat small intestine in vivo to determine the effect of saline infusion on intestinal transport of Na(+) and H(2)O. Saline infusion decreased net Na(+) flux (J(n) (Na)) from 12.7 +/-0.8 to 6.4 +/-1.5 muEq/hr per cm in the jejunum when the intestinal perfusate contained both Na(+) and glucose. A similar fall in J(n) (Na) occurred in ileum. When mannitol was substituted for glucose in the perfusate, control absorption decreased 29% in jejunum and 18% in ileum, but saline infusion still caused a decrease in J(n) (Na) quantitatively similar to that seen when glucose was present. When choline was substituted for Na(+) in the perfusate, there was net movement of Na(+) from blood to lumen during control and this net secretion was increased further after saline infusion. These observations suggest that saline infusion has a similar effect to decrease intestinal J(n) (Na) under three widely different conditions of basal sodium transport. Permeability of intestinal mucosa to inulin was very low under basal conditions but increased fivefold after saline infusion, and the unidirectional flux of Na(+) from blood to lumen doubled. This increase in unidirectional flux of Na(+) was greater than the observed decrease in J(n) (Na).Thus, saline infusion decreased net absorption of Na(+) and H(2)O from small intestine through mechanisms which did not appear to be dependent upon the rate of Na(+) flux from lumen to blood, and in association with an increased flux of inulin and Na(+) into the intestinal lumen. The data suggest that the effect of saline infusion to decrease net absorption from the intestine could be due either to an increase in passive permeability of the epithelium which could disrupt solute gradients within the membrane or to an increase in flow of solution into the intestinal lumen.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Invest. 1968 Apr;47(4):884-900 - PubMed
    1. J Clin Invest. 1966 Dec;45(12):1854-8 - PubMed
    1. J Clin Invest. 1968 Jul;47(7):1561-72 - PubMed
    1. Q J Med. 1960 Jul;29:407-21 - PubMed
    1. J Exp Med. 1968 Mar 1;127(3):555-72 - PubMed

MeSH terms