Estrogen receptors and effects of estrogen on membrane electrical properties of coronary vascular smooth muscle
- PMID: 511949
- DOI: 10.1002/jcp.1041000218
Estrogen receptors and effects of estrogen on membrane electrical properties of coronary vascular smooth muscle
Abstract
The effect of estrogen stimulation in vitro on the electrical properties of vascular smooth muscle (VSM), and the concentration of estrogen receptors in VSM were measured in isolated coronary arteries. Microelectrode measurements of the dog coronary artery membrane potential (Em) showed quiescent values of -51 millivolts (mV) and an input resistance (rin) of 10 megohms. Addition by diethylstilbestrol (DES) at 10(-6) M hyperpolarized the membrane to -64 mV and reduced input resistance (rin) to 5 megohms within 15 minutes. Extrapolation of the Em vs. log [K]o curve to zero potential gave similar values of [K]i of around 170 mM in both normal and DES treated muscles suggesting that the DES induced hyperpolarization is not due to increased Na-K pump activity. The 0.5% ethanol vehicle alone had no effect on the membrane potentials. Tetraethylammonium ion (TEA) induced action potentials in the previously quiescent tissue. When DES was applied in the presence of TEA, the membrane potential increased and the action potentials were abolished. Scatchard analysis of the estrogen receptor binding demonstrated both a high and a low affinity receptor for estrogen in the VSM. These data indicate that DES hyperpolarizes the VSM cells by a mechanism other than an increased Na-K pump activity. The mechanism of this increased Em may be due to factors which increase K+ conductance either mediated directly through estrogen interaction with its cytosolic receptors or through some unidentified second mechanism.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous