Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Apr 14;427(2):536-48.
doi: 10.1016/0005-2795(76)90196-3.

Interaction of serum albumin with normal and sickle hemoglobins

Interaction of serum albumin with normal and sickle hemoglobins

K Adachi et al. Biochim Biophys Acta. .

Abstract

The stability of oxyhemoglobin S during mechanical shaking was enhanced by the addition of human serum albumin. The stabilizing effect was maximum when the concentration of serum albumin approached that of oxyhemoglobin, suggesting a molecular level interaction between them. The effects of serum albumin on oxyhemoglobin A were essentially similar to those on oxyhemoglobin S. Deoxy- and methemoglobins were also stabilized by serum albumin. The addition of human serum albumin to a solution containing sickle cell oxyhemoglobin slowly formed a compound which had an absorbance peak at 620 nm. After purification by Sephadex G-200 column chromatography, this compound was identified as methemalbumin. Comparison of the rates of formation of methemalbumin from hemoglobin with various ligand states and human serum albumin showed that the rate of formation from hemichrome was much faster than from met-, oxy- and deoxyhemoglobin. About 60% of the heme was transferred from hemichrome to albumin when the mixture was kept standing at room temperature for 5 min, in contrast to only 5% from methemoglobin. This result suggests that hemichrome, rather than methemoglobin, is the intermediate in the formation of methemalbumin from oxyhemoglobin and human serum albumin. This hypothesis is supported by the finding that the rate of formation of methemalbumin was faster at alkaline pH values than at acid pH values. Serum albumin from various animal sources showed different stabilizing effects. The formation of methemalbumin from these animal albumins was far less than that from human albumin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources