Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Dec;102(1):59-64.
doi: 10.1111/j.1432-1033.1979.tb06262.x.

Effects of amphiphiles on structure and activity of human erythrocyte membrane acetylcholinesterase

Free article

Effects of amphiphiles on structure and activity of human erythrocyte membrane acetylcholinesterase

T Wiedmer et al. Eur J Biochem. 1979 Dec.
Free article

Abstract

Detergents above their critical micellar concentration dissociate the aggregated forms of pure acetylcholinesterase from human erythrocyte membranes to a 6.5-S form, the protomer. This form is active only in presence of amphiphiles. 1. Uncharged (Triton X-100, Tweens, beta-D-octylglycoside), anionic (sodium dodecyl sulfate) and zwitterionic (lysophosphatidylcholine) detergents or bile salts (sodium cholate, deoxycholate) stabilize the 6.5-S enzyme at concentrations well below their critical micellar concentration. 2. Total erythrocyte lipids fully sustain catalytic activity of the 6.5-S form. 3. Protein-protein interactions stabilize the activity of the 6.5-S form of acetylcholinesterase. Above a critical acetylcholinesterase concentration (2.5 microgram/ml) enzyme activity no longer depends on the presence of an amphiphile as reaggregation to multiple molecular forms occurs. It is concluded that human erythrocyte membrane acetylcholinesterase is fully active only if the enzyme can undergo hydrophobic interactions with amphiphiles such as detergents, lipids or proteins.

PubMed Disclaimer

MeSH terms

LinkOut - more resources