Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975;15(1):17-29.
doi: 10.1159/000130495.

Sister chromatid exchange in human chromosomes from normal individuals and patients with ataxia telangiectasia

Sister chromatid exchange in human chromosomes from normal individuals and patients with ataxia telangiectasia

S M Galloway et al. Cytogenet Cell Genet. 1975.

Abstract

A new fluorescence plus Giemsa staining technique now makes the detection of sister-chromatid exchange (SCE) a relatively easy matter in cells containing 5-BrdU-substituted DNA. The technique has been applied to human cells to examine the distribution of SCE between different people and within different chromosomes. The results show: (1) That there were no large differences in the incidence of SCE between blood leukocyte chromosomes from male and female adults and newborn, and that similar frequencies were found in cells from two patients with ataxia telangiectasia which, nevertheless, showed the typical increases in chromosomal aberrations. (2) The distribution of SCE between chromosomes in the complement was found to be proportional to chromosome length, although the smaller chromosomes were under-represented, but not significantly so. (3) The distribution of SCE within chromosomes was nonrandom, with a deficiency in the centromeric and an excess in the mid-arm regions. There was no evidence for an excess of SCE in chromosome regions rich in AT DNA sequences. (4) The frequency of SCE is to some extent dependent of 5-BrdU concentration, but the influence of concentration is minimal within the range of from 1 to 160 muM. Human cells exposed over two cell cycles at these higher BrdU levels have around 14 SCE per cell-a frequency virtually identical with that observed in cultured cells from the Chinese hamster, wallaby, and rat kangaroo.

PubMed Disclaimer

Similar articles

Cited by