Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Dec;115(6):1599-1602.

Ionophore A-23187 induced histamine release from rat mast cells and rat basophil leukemia (RBL-1) cells

  • PMID: 52673

Ionophore A-23187 induced histamine release from rat mast cells and rat basophil leukemia (RBL-1) cells

R P Siraganian et al. J Immunol. 1975 Dec.

Abstract

Ionophore A-23187 releases histamine from normal mast cells apparently by promoting Ca++ influx (Foreman et al, Nature 245: 249, 1973). In our hands at concentrations of greater than 0.2 mug/ml release occurs in 1 to 2 min, is blocked by metabolic inhibitors, and is unaccompanied by cytotoxicity (trypan-blue uptake, lactic dehydrogenase (LDH) release). At higher doses (0.5 mug/ml) histamine release is followed by significant cytotoxicity, but again Ca++ is required. In parallel studies, we examined cultured rat basophilic leukemia (RBL-1) cells. These cells, which apparently have normal surface receptors for IgE, contained approximately 700 ng histamine/10(6) cells but did not release histamine when IgE-mediated release was looked for. They do not respond to doses of ionophore which would be expected to give non-cytotoxic histamine release. At higher doses histamine release is preceded by progressive LDH release: LDH release is 75% complete at 5 min whereas 10 min are required for 75% maximal histamine release. This reaction requires Ca++ and is temperature dependent but is not inhibited by metabolic poisons (2-deoxyglucose, dinitrophenol, CN-). These studies suggest that either Ca++ does not enter into these cells normally or that one or more mechanisms which are ordinarily triggered by the changes in Ca++ flow are unresponsive in the RBL-1 cells. These studies also underline the importance of ruling out cytotoxicity in ionophore-induced phenomena.

PubMed Disclaimer

Similar articles

Cited by